

Course Descrip,on:

A rigorous introduc-on to compu-ng science and computer programming, suitable for students
who already have some background in compu-ng science and programming. Students will learn
the fundamental concepts of compu-ng science and develop basic skills in so=ware
development.

Topics include: history of compu-ng science; review of elementary programming; data
types and control structures; fundamental algorithms; abstract data types; elementary
data structures; basic object-oriented programming and so=ware design; elements of
empirical and theore-cal algorithmic; computability and complexity; design,
specifica-on and program correctness.

Addi,onal Course Details:

Required Texts/Readings/Learning Resources:
Textbook: Problem Solving with C++, 10/E, Walter Savitch, ISBN-10: 0133591743 • ISBN- 13:
9780133591743 ©2018 Addison-Wesley

Course Learning Outcomes:

Course Outline

Term: Summer 2025 Course No: CSCI 125 Course Credits: 3

Instructor: Je-c Gū Course Sec-on No: 17 Total Hours: 5 Total Weeks: 13

Instructor Office:
Room No. 544
Main Campus

Course Title:
Introduc-on to Digital and
Computer Systems Design

Class Room No. 340

Instructor Email:
jgu@columbiacollege.ca

Class Mee-ng Days/Time:
TF: 16:00 - 17:50; W: 17:00-17:50

Instructor Office Hours:
MT: 14:00-16:00

Course Format:
In person delivery

Course Prerequisites
Computer Science 120

Course Corequisites
English 099

Transferability to: visit bctransferguide.ca

mailto:jgu@columbiacollege.ca
http://www.bctransferguide.ca

Upon successful comple-on of this course the student will be able to:

1. Given a code fragment, describe its purpose in plain English, and trace its execu-on.

2. Adapt an exis-ng code fragment to change its behaviour.

3. Define the term "pseudocode" and the term "algorithm".

4. List various desirable proper-es of an algorithm.

5. Use pseudocode and/or diagrams to describe the steps involved in solving simple problems.

6. Given a simple problem, create an algorithm to solve it.

7. Modify condi-onal structures in a short program.

8. Modify itera-ve structures in a short program.

9. Write well-structured, well-documented, well-commented readable code.

10. Describe the role of documenta-on and comments.

11. Use language-appropriate idioms and write meaningful, well-structured external documenta-on.

12. Design, implement, evaluate, and remove errors from a program that uses each of the following
fundamental programming constructs: basic computa-on, simple I/O, basic condi-onal and
itera-ve structures, and func-ons.

13. Describe the syntax and seman-cs of condi-onal structures available in [a language].

14. Use condi-onal structures available in [a language].

15. Choose proper condi-onal and/or itera-ve constructs for a given programming task and jus-fy
your choice.

16. Describe the syntax and seman-cs of itera-on structures available in a language.

17. Use itera-ve structures available in a language.

18. Apply decomposi-on techniques to break a program into smaller pieces (where each piece has a
specific purpose or responsibility).

19. Explain the role of pseudocode and diagramming in decomposing problems.

20. Define the term "formal parameter" and the term "actual parameter".

21. Find func-on and given a code fragment, iden-fy formal and actual parameters of a func-on.

22. Describe the role of formal and actual parameters of a func-on.

23. Trace the execu-on of a program (e.g., desk checking).

24. Describe and use strategies for removing syntax errors, logic errors, and run-me errors.

25. Interpret error messages (e.g. compiler, run--me) and iden-fy their causes.

26. Define the term "itera-on" and the term "recursion".

27. Recognise algorithms as being itera-ve or recursive.

28. Define the term "loop invariant".

29. Use pointers/references in [an impera-ve language].

30. Describe the advantages and disadvantages of using pointers/references.

31. Describe the risks of using pointers/references (e.g., dangling pointers, memory leaks).

32. Implement list data structures using both index-based and reference/pointer techniques.

33. Define "-me complexity" and "space complexity".

34. Given a code fragment, find and derive its -me and/or space complexity.

35. Compare and contrast code fragments based on their -me and/or space complexity.

36. Define "big O", "big Omega", and "big Theta".

37. Compare and contrast big O, big Omega, and big Theta nota-ons.

38. Use complexity to es-mate the -me taken to execute code fragments.

39. Explain the differences between best-, worst-, and average-case complexity analysis.

40. Describe why best-case complexity analysis is rarely relevant and how worst-case complexity
analysis may never be encountered in prac-ce.

41. Given a list and a target, explain how the sequen-al search amempts to find the target.

42. Recall and derive the Big O value for a sequen-al search.

43. Given an algorithm, compute its worst-case asympto-c complexity.

44. Define the term "abstrac-on" and the term "implementa-on".

45. Differen-ate between an abstrac-on and an implementa-on.

46. Describe list data structures along with their public-interface specifica-ons.

Course Content/Schedule*

*Timing subject to change

Evalua,on Criteria

Classroom Code of Conduct:

Students will be prepared for any appointments with the instructor or other students – this means
logging in and gepng out paper, pens, necessary texts and so on before the appointment starts.

Week Topic(s) Readings Assessments Briefly describe list (via
number) the outcomes
linked to the
assessments.

1 Introduc-on to CS and
Programming;

Environment setup

Lecture notes 1

2 Introduc-on to your coding
enviroment;

Your first C/C++ programme

Lecture notes Lab 0 due; 1, 2

3 Your first C/C++ programme;
Condi-ons and Loops

Lecture notes 2, 3

4 Func-ons Lecture notes Assignment 1 due; 2, 3

5 Func-ons;
Array

Lecture notes Quiz 1; 2, 3, 4

6 Pointers Lecture notes Assignment 2 due; 2, 3, 4, 5

7 Review - Midterm Lecture notes Midterm;

8 Algorithms and Complexity All covered content 3, 4

9 Algorithms and Complexity Lecture notes Assignment 3 due; 3, 4

10 Data Structure Lecture notes Quiz 2; 3, 4

11 Class, Object Oriented Programming Lecture notes Assignment 4 due; 2, 4, 5

12 Class, Object Oriented Programming Lecture notes Assignment 5 due; 2, 4, 5

13 FINAL EXAM

Evalua,on Methods % Comments

Quiz 10

Assignments + Labs 30

Midterm 20

Final 40

Total 100%

1. Students will communicate respecvully when interac-ng with the instructor or classmates.

2. Students will respecvully communicate with the instructor and classmates in discussion groups,
office hours, and in any type of electronic communica-on.

3. Students will respond to messages/emails from the instructor or other classmates in a -mely
manner.

Chea,ng and Plagiarism Policy:

I expect all students to uphold the principle of academic honesty. Chea-ng and plagiarism (presen-ng
another person’s words or ideas as one’s own) are not acceptable behaviour at anywhere. Depending on
the severity of the offence such acts can result in a grade of zero on the test or assignment, a failing
grade (F) in the course, or expulsion. In all cases, the circumstances and the penalty are recorded in the
student’s file. Do not share your files with others. Do not let others copy or mimic your files. You may
take inspira,on, but any work you do must be original. Failure to comply will result in plagiarism
charges to both the party providing assistances, as well as the party receiving.

Academic misconduct not covered in the College's Chea-ng and Plagiarism Policy, is covered under
Academic Policy 2.6 Academic Misconduct. It can be found at the following link: hmps://
www.columbiacollege.ca/about/college-policies/ . You are expected to familiarise yourself with this
policy, as it covers serious issues including uploading copyright material, submission of falsified records
and other strategies to gain unfair academic advantage. If you are unclear on the contents, please ask for
clarifica-on.

Course-Specific Policies:

1. Minimum Final Exam and Lab Grades Policy

Students must achieve 50% in Labs, 50% in the Final exam, and 50% in overall grade to pass the course.

2. Late Submission / Resubmission Policy

If you are affected by personal issues such as sickness, injuries, the passing of a rela-ve, or other
trauma-sing experiences, you should contact an advisor and seek professional help and your instructor
will try to accommodate as much as possible. Otherwise, late submissions and resubmission are not
allowed beyond the original due.

Grading System

Grade Percentage Grade Points Ra-ng

A+ 90-100 4.3 Excellent

A 85-89 4.0

A - 80-84 3.7 Very Good

B+ 76-79 3.3

B 72-75 3.0

B - 68-71 2.7 Good

C+ 64-67 2.3

https://www.columbiacollege.ca/about/college-policies/
https://www.columbiacollege.ca/about/college-policies/

Please see the college calendar for more informa-on about grading and related policies.

C 60-63 2.0 Sa-sfactory

C- 55-59 1.7

D 50-54 1.0 Marginal Pass

F 0-49 0.0 Fail

N Below 50 0.0 Failure for non-comple-on or
non-amendance

https://www.columbiacollege.ca/registrations-and-records/college-calendar

