

Course Description:

A rigorous introduction to computing science and computer programming, suitable for students
who already have some background in computing science and programming. Students will learn
the fundamental concepts of computing science and develop basic skills in software
development.

Topics include: history of computing science; review of elementary programming; data
types and control structures; fundamental algorithms; abstract data types; elementary
data structures; basic object-oriented programming and software design; elements of
empirical and theoretical algorithmic; computability and complexity; design,
specification and program correctness.

Additional Course Details:

Required Texts/Readings/Learning Resources:
Textbook: Problem Solving with C++, 10/E, Walter Savitch, ISBN-10: 0133591743 • ISBN- 13:
9780133591743 ©2018 Addison-Wesley

Course Learning Outcomes:

Course Outline

Term: Summer 2025 Course No: CSCI 125 Course Credits: 3

Instructor: Jetic Gū Course Section No: 17 Total Hours: 5 Total Weeks: 13

Instructor Office:
Room No. 544
Main Campus

Course Title:
Introduction to Digital and
Computer Systems Design

Class Room No. 340

Instructor Email:
jgu@columbiacollege.ca

Class Meeting Days/Time:
TF: 16:00 - 17:50; W: 17:00-17:50

Instructor Office Hours:
MT: 14:00-16:00

Course Format:
In person delivery

Course Prerequisites
Computer Science 120

Course Corequisites
English 099

Transferability to: visit bctransferguide.ca

mailto:jgu@columbiacollege.ca
http://www.bctransferguide.ca

Upon successful completion of this course the student will be able to:

1. Given a code fragment, describe its purpose in plain English, and trace its execution.

2. Adapt an existing code fragment to change its behaviour.

3. Define the term "pseudocode" and the term "algorithm".

4. List various desirable properties of an algorithm.

5. Use pseudocode and/or diagrams to describe the steps involved in solving simple problems.

6. Given a simple problem, create an algorithm to solve it.

7. Modify conditional structures in a short program.

8. Modify iterative structures in a short program.

9. Write well-structured, well-documented, well-commented readable code.

10. Describe the role of documentation and comments.

11. Use language-appropriate idioms and write meaningful, well-structured external documentation.

12. Design, implement, evaluate, and remove errors from a program that uses each of the following
fundamental programming constructs: basic computation, simple I/O, basic conditional and
iterative structures, and functions.

13. Describe the syntax and semantics of conditional structures available in [a language].

14. Use conditional structures available in [a language].

15. Choose proper conditional and/or iterative constructs for a given programming task and justify
your choice.

16. Describe the syntax and semantics of iteration structures available in a language.

17. Use iterative structures available in a language.

18. Apply decomposition techniques to break a program into smaller pieces (where each piece has a
specific purpose or responsibility).

19. Explain the role of pseudocode and diagramming in decomposing problems.

20. Define the term "formal parameter" and the term "actual parameter".

21. Find function and given a code fragment, identify formal and actual parameters of a function.

22. Describe the role of formal and actual parameters of a function.

23. Trace the execution of a program (e.g., desk checking).

24. Describe and use strategies for removing syntax errors, logic errors, and runtime errors.

25. Interpret error messages (e.g. compiler, run-time) and identify their causes.

26. Define the term "iteration" and the term "recursion".

27. Recognise algorithms as being iterative or recursive.

28. Define the term "loop invariant".

29. Use pointers/references in [an imperative language].

30. Describe the advantages and disadvantages of using pointers/references.

31. Describe the risks of using pointers/references (e.g., dangling pointers, memory leaks).

32. Implement list data structures using both index-based and reference/pointer techniques.

33. Define "time complexity" and "space complexity".

34. Given a code fragment, find and derive its time and/or space complexity.

35. Compare and contrast code fragments based on their time and/or space complexity.

36. Define "big O", "big Omega", and "big Theta".

37. Compare and contrast big O, big Omega, and big Theta notations.

38. Use complexity to estimate the time taken to execute code fragments.

39. Explain the differences between best-, worst-, and average-case complexity analysis.

40. Describe why best-case complexity analysis is rarely relevant and how worst-case complexity
analysis may never be encountered in practice.

41. Given a list and a target, explain how the sequential search attempts to find the target.

42. Recall and derive the Big O value for a sequential search.

43. Given an algorithm, compute its worst-case asymptotic complexity.

44. Define the term "abstraction" and the term "implementation".

45. Differentiate between an abstraction and an implementation.

46. Describe list data structures along with their public-interface specifications.

Course Content/Schedule*

*Timing subject to change

Evaluation Criteria

Classroom Code of Conduct:

Students will be prepared for any appointments with the instructor or other students – this means
logging in and getting out paper, pens, necessary texts and so on before the appointment starts.

Week Topic(s) Readings Assessments Briefly describe list (via
number) the outcomes
linked to the
assessments.

1 Introduction to CS and
Programming;

Environment setup

Lecture notes 1

2 Introduction to your coding
enviroment;

Your first C/C++ programme

Lecture notes Lab 0 due; 1, 2

3 Your first C/C++ programme;
Conditions and Loops

Lecture notes 2, 3

4 Functions Lecture notes Assignment 1 due; 2, 3

5 Functions;
Array

Lecture notes Quiz 1; 2, 3, 4

6 Pointers Lecture notes Assignment 2 due; 2, 3, 4, 5

7 Review - Midterm Lecture notes Midterm;

8 Algorithms and Complexity All covered content 3, 4

9 Algorithms and Complexity Lecture notes Assignment 3 due; 3, 4

10 Data Structure Lecture notes Quiz 2; 3, 4

11 Class, Object Oriented Programming Lecture notes Assignment 4 due; 2, 4, 5

12 Class, Object Oriented Programming Lecture notes Assignment 5 due; 2, 4, 5

13 FINAL EXAM

Evaluation Methods % Comments

Quiz 10

Assignments + Labs 30

Midterm 20

Final 40

Total 100%

1. Students will communicate respectfully when interacting with the instructor or classmates.

2. Students will respectfully communicate with the instructor and classmates in discussion groups,
office hours, and in any type of electronic communication.

3. Students will respond to messages/emails from the instructor or other classmates in a timely
manner.

Cheating and Plagiarism Policy:

I expect all students to uphold the principle of academic honesty. Cheating and plagiarism (presenting
another person’s words or ideas as one’s own) are not acceptable behaviour at anywhere. Depending on
the severity of the offence such acts can result in a grade of zero on the test or assignment, a failing
grade (F) in the course, or expulsion. In all cases, the circumstances and the penalty are recorded in the
student’s file. Do not share your files with others. Do not let others copy or mimic your files. You may
take inspiration, but any work you do must be original. Failure to comply will result in plagiarism
charges to both the party providing assistances, as well as the party receiving.

Academic misconduct not covered in the College's Cheating and Plagiarism Policy, is covered under
Academic Policy 2.6 Academic Misconduct. It can be found at the following link: https://
www.columbiacollege.ca/about/college-policies/ . You are expected to familiarise yourself with this
policy, as it covers serious issues including uploading copyright material, submission of falsified records
and other strategies to gain unfair academic advantage. If you are unclear on the contents, please ask for
clarification.

Course-Specific Policies:

1. Minimum Final Exam and Lab Grades Policy

Students must achieve 50% in Labs, 50% in the Final exam, and 50% in overall grade to pass the course.

2. Late Submission / Resubmission Policy

If you are affected by personal issues such as sickness, injuries, the passing of a relative, or other
traumatising experiences, you should contact an advisor and seek professional help and your instructor
will try to accommodate as much as possible. Otherwise, late submissions and resubmission are not
allowed beyond the original due.

Grading System

Grade Percentage Grade Points Rating

A+ 90-100 4.3 Excellent

A 85-89 4.0

A - 80-84 3.7 Very Good

B+ 76-79 3.3

B 72-75 3.0

B - 68-71 2.7 Good

C+ 64-67 2.3

https://www.columbiacollege.ca/about/college-policies/
https://www.columbiacollege.ca/about/college-policies/

Please see the college calendar for more information about grading and related policies.

C 60-63 2.0 Satisfactory

C- 55-59 1.7

D 50-54 1.0 Marginal Pass

F 0-49 0.0 Fail

N Below 50 0.0 Failure for non-completion or
non-attendance

https://www.columbiacollege.ca/registrations-and-records/college-calendar

