
01.10.24 17:09

CSCI 250 
Introduction to Computer Organisation 

Lecture 2: Computer Memory III

Jetic Gū

2024 Fall Semester (S3)



Overview
• Focus: Course Introduction


• Architecture: Logical Circuits


• Textbook: v4: 13.1


• Core Ideas:


1. Memory Hierarchy


2. Cache


3. Multi-level Cache



Memory Hierarchy

P1 
Memory Hierarchy



Multiple Levels of Storage
• Storage Devices: Hard Drive/SSD


• Slow, non-volatile, can be TBs


• Main Memory: Random Access Memory


• Faster, volatile, can be GBs


• CPU: Registers


• Very fast, volatile, can be Bs

Te
ch

nic
al

P1 
Memory Hierarchy

Between B 
and GB, there’s a 

big gap



Memory is a significant 
Bottleneck

• When you run a computer programme for computation, how much time is 
spent in accessing information, how much time is actually spent on 
computation?

Te
ch

nic
al

P1 
Memory Hierarchy



Consider Sorting: Bubble Sort
• Time complexity: 


• Comparison: , 1 CPU cycle


• Value assignment: memory access 
3-5 CPU cycles+


• Value retrieval: memory access 
3-5 CPU cycles+


• memory vs comparison ratio:  
7:1 +

O(n2)

O(1)

Te
ch

nic
al

P1 
Memory Hierarchy

 def sort(a): 
 flag = true 
 while flag: 

 flag = false 
 for i in range(len(a)-1): 

 if a[i] > a[i+1]: 
 swap(a[i], a[i+1]) 
 flag = true 

• Keep sorting until no adjacent 
elements are out of order 

memory access
memory access

memory access
memory access

memory access + comparison 
memory access

memory access



Consider: Matrix Multiplication

• Time complexity: 


• Multiplication: 2-4 CPU cycles


• A single memory access


• Memory access required per 
multiplication: 5-7+


• How much time spent on memory 
access: more than 80%, 
realistically more than 90% easily!

O(nmk)

Te
ch

nic
al

P1 
Memory Hierarchy

• 


• 


• Keep sorting until no adjacent 
elements are out of order 

(n × m) × (m × k)

cn,k = Σm
i=1(an,i × bi,k)



In a lot of applications, Memory 
is the biggest bottleneck

• Solution: if memory is too slow, registers have too few slots, can we have 
something in between? Yes, that’s called Cache


• Cache: 
faster than memory, slower than register,  
smaller than memory, bigger than register

Conc
ep

t

P0 
XXXXXXX

P1 
Memory Hierarchy

CPU Memory

Bs of storage GBs of storage



Cache

P2 
Cache



Cache
• Cache is like proxy, information is still stored in main memory


• e.g. main memory has 8GB, we have 1 level of cache capable of 1KB


• Since memory access can often be localised, we can retrieve 1KB from 
the main memory, every read/write operation is performed on Cache only 
first


• Then: 
1) periodically sync between Cache and Main memory 
2) sync only when Cache runs out of space

Conc
ep

t

P0 
XXXXXXX

P2 
Cache



Simple Simulation

• Assume Level 1 Cache only, which uses SRAM so speed is comparable to 
registers (say 2 cycles); Assume main memory requires 10 cycles

Te
ch

nic
al

P0 
XXXXXXX

P2 
Cache

1 FFFF0000h

2 FFFF0010h

3 FFFF23A0h

4 FF2A14BCh

5 FFF701A0h

6 FFFF0110h

7 FF2A1943h

8 FFFF01A0h

9 FF4D2042h

10 FF3700E7h

Memory Access L1 Cache
1

Without Cache: 10 x 10 = 100 cycles
Cache has 1 block, can store 16x16 values

Block FFFF00hCache
Cache
Main

Main

Main

Main

Main

Main

Main

Main

One 16x16 block: 80 cycles



Simple Simulation

• Assume Level 1 Cache only, which uses SRAM so speed is comparable to 
registers (say 2 cycles); Assume main memory requires 10 cycles

Te
ch

nic
al

P0 
XXXXXXX

P2 
Cache

1 FFFF0000h

2 FFFF0010h

3 FFFF23A0h

4 FF2A14BCh

5 FFF701A0h

6 FFFF0110h

7 FF2A1943h

8 FFFF01A0h

9 FF4D2042h

10 FF3700E7h

Memory Access L1 Cache
1

2

Without Cache: 10 x 10 = 100 cycles
Cache has 2 blocks, can store two 16x16 values

Block FFFF00hCache
Cache
Main

Main

Main

Cache

Main

Cache

Main

Main

One 16x16 block: 84 cycles

Block FFFF01h

Two 16x16 blocks: 68 cycles



Simple Simulation

• Assume Level 1 Cache only, which uses SRAM so speed is comparable to 
registers (say 2 cycles); Assume main memory requires 10 cycles

Te
ch

nic
al

P0 
XXXXXXX

P2 
Cache

1 FFFF0000h

2 FFFF0010h

3 FFFF23A0h

4 FF2A14BCh

5 FFF701A0h

6 FFFF0110h

7 FF2A1943h

8 FFFF01A0h

9 FF4D2042h

10 FF3700E7h

Memory Access L1 Cache
1

Without Cache: 10 x 10 = 100 cycles
Cache has 1 block, can one two 164 values

Block FFFFhCache
Cache
Cache

Main

Main

Cache

Main

Cache

Main

Main

One 16x16 block: 84 cycles
Two 16x16 blocks: 68 cycles

One 164 blocks: 60 cycles



Cache Management
• Factors to consider:


• Cache is almost always managed by hardware, OS and programmes usually 
cannot manipulate cache directly


• Size of cache (vs cost) 

• Partitioning of Cache: e.g. how much for a block, division between 
instructions and data, etc.


• Multiple levels of Cache: Modern CPU in addition to above, has also 
multiple levels of cache: L1 is the fastest, sometimes inside the CPU chip, 
then L2 L3 could be in the CPU or on the motherboard

Conc
ep

t

P2 
Cache



Specialised Caches
• Instruction cache vs data cache


• Instruction cache contains computer programme instructions 
This part is often read-only, and always put inside Cache for the fastest 
possible access


• Data cache contains computer programme data, data structures, 
variables, dynamically allocated memory, etc. 
This part is RW, and can be shifted in and outside of Cache dynamically


• Why does it matter? Shifting anything between memory and cache takes 
time, we want to focus on data cache optimisation

Conc
ep

t

P2 
Cache



Specialised Caches

Conc
ep

t

1. Depends on hardware application

P2 
Cache

CPU

Instruction 
Cache

Data 
Cache

Main 
Memory Hard Drive

• C/C++: constant variables vs variables  
const variables are stored in instruction cache, data cache can be moved in 
and out of the main memory more often, so can be a little slower at times1



Multi-Level Cache

P3 
Multi-Level Cache



L1-L3 Cache

• Modern Computers have multiple levels of cache, very commonly 3 levels


• L1: Located on the CPU die


• L2: On CPU or motherboard


• L3: More commonly on the motherboard

Te
ch

nic
al

P3 
Multi-Level Cache



L1-L3 Cache
• Multi-Level cache parameters


• Cache latency: L1 has the fastest latency, L2 next, L3 slowest


• Hit rate vs Miss rate


• Hit: the memory address I am trying to access is inside the cache


• Miss: the memory address I am trying to access is not in the cache


• Multi-level: e.g.: L1 miss, L2 miss, L3 hit, retrieve from L3, etc.

Te
ch

nic
al

P3 
Multi-Level Cache



Cache Entries: #1

• Address comes in:


• L1 hit: CPU proceeds to read from L1 cache;


• carry on;

Te
ch

nic
al

P3 
Multi-Level Cache



Cache Entries: #2

• Address comes in:


• L1 miss: proceed to L2;


• L2 hit:  
entry is copied to L1, if necessary replacing the most ancient entry in L1;


• CPU proceeds to read from L1;


• carry on;

Te
ch

nic
al

P3 
Multi-Level Cache



Cache Entries: #3
• Address comes in:


• L1 miss: proceed to L2;


• L2 miss: proceed to L3;


• L3 hit: 
entry is copied to L2, if necessary replacing most ancient entry in L2; 
entry is then copied to L1 from L2, if necessary replacing most ancient entry in L1;


• CPU proceeds to read from L1;


• carry on;

Te
ch

nic
al

P3 
Multi-Level Cache



Cache Entries: #4
• Address comes in:


• L1 miss: proceed to L2;


• L2 miss: proceed to L3;


• L3 miss: proceed to main memory;


• Entry is copied to L3, if necessary replacing most ancient entry in L3; 
entry is copied to L2 from L3, if necessary replacing most ancient entry in L2; 
entry is copied to L1 from L2, if necessary replacing most ancient entry in L1;


• CPU proceeds to read from L1;


• carry on;

Te
ch

nic
al

P3 
Multi-Level Cache



Lab 2 Part 3

P4 
Lab



Lab 2 Part 3

• Cache simulator


• Simulate cache operations


• Parameters: L1 speed/size, L2 speed/size, L3 speed/size


• List of memory addresses to access, output hit and miss rates, and 
estimation of total time needed to actually retrieve data


• Files: mycache.py, mycache_test.py

Te
ch

nic
al

P4 
Lab



Lab 2 Part 3
• Simple algorithm:


• A stack is maintained inside the Cache


• If the target memory address is inside the Cache, it is accessed, you log the 
latency


• If the target memory address is not inside the Cache, remove the earliest 
memory block from Cache, replace it with the target memory block, the you 
log the latency


• See P3 of LS7 for detailed algorithm

Te
ch

nic
al

P4 
Lab


