2

01.10.24 17:09

CSCI 250
Introduction to Computer Organisation
Lecture 2: Computer Memory llI

Jetic Gu
2024 Fall Semester (S3)

Overview

Focus: Course Introduction
Architecture: Logical Circuits
Textbook: v4: 13.1

Core ldeas:

1. Memory Hierarchy

2. Cache

3. Multi-level Cache

Memory Hierarchy

Multiple Levels of Storage

e Storage Devices: Hard Drive/SSD
e Slow, non-volatile, can be TBs

e Main Memory. Random Access Memory

e Faster, volatile, can be GBs Between B
and GB, there’s a
e CPU: Registers big gap

e \ery fast, volatile, can be Bs

Memory Is a significant
E— Bottleneck

e When you run a computer programme for computation, how much time is
spent in accessing information, how much time is actually spent on
computation?

e Consider Sorting: Bubble Sort

e Time complexity: O(n?)
def sort(a):

e Comparison: O(1), 1 CPU cycle tlag = true mMmemoryaccess
while flag: memory access
flag = false memory access
e Value assignment: memory aCCess for 1 1n range (len (a)-1)memory access
3-5 CPU cycles+ memory access + compariédﬁh ali] > ?_-iJ’l :_
swap(all], ali+1l])memory access
flag = true memory access

e \alue retrieval: memory access

3-5 CPU cycles+ . . .
e Keep sorting until no adjacent

. . elements are out of order
* memory vsS comparison ratio:

71 +

I Consider: Matrix Multiplication

e Time complexity: O(nmk)

e Multiplication: 2-4 CPU cycles

e (nXm)X (mX k)
e A single memory access

o Cpp = Zizy(a@,; X by)
e Memory access required per

multiplication: 5-7+ Keep sorting until no adjacent

elements are out of order
e How much time spent on memory

access: more than 80%,
realistically more than 90% easily!

In a lot of applications, Memory
W is the biggest bottleneck

Bs of storage GBs of storage

n: :m

e Solution: if memory is too slow, registers have too few slots, can we have
something in between? Yes, that’s called Cache

e Cache:
faster than memory, slower than register,
smaller than memory, bigger than register

Cache

e Cache is like proxy, information is still stored in main memory
e e.g. main memory has 8GB, we have 1 level of cache capable of 1KB

e Since memory access can often be localised, we can retrieve 1KB from
the main memory, every read/write operation is performed on Cache only

first

e [hen:
1) periodically sync between Cache and Main memory

2) sync only when Cache runs out of space

Simple Simulation

Memory Access L1 Cache
1 FFFFO000h cache [MMEMEMN Biock FFFFOON
2 FFFFOO10h Cache
3 FFFF23A0h Main
4 FF2A14BCh Main
5 FFF701AO0h Main
Mai Without Cache: 10 x 10 = 100 cycles

ain
6 FFFFOT10n | Cache has 1 block, can store 16x16 values
7 FF2A1943h Main

One 16x16 block: 80 cycles

8 FFFFO1AOh Main
9 FF4D2042h Main
10 FF3700E7h Main

e Assume Level 1 Cache only, which uses SRAM so speed is comparable to
registers (say 2 cycles); Assume main memory requires 10 cycles

Memory Access
FFFFOOOO0h

=N

FFFFOO10h
FFFF23A0h
FF2A14BCh
FFF701AQOh
FFFFO110h
FF2A1943h
FFFFO1AOh

2
3
4
5
6
7
8
9

FF4D2042h

FF3700E7h

-
o

e Assume Level 1 Cache only, which uses SRAM so speed is comparable to
registers (say 2 cycles); Assume main memory requires 10 cycles

Cache
Cache
Main
Main
Main
Cache
Main
Cache
Main

Main

Simple Simulation

L1 Cache
Block FFFFOOh

Block FFFFO1h

Without Cache: 10 x 10 = 100 cycles
Cache has 2 blocks, can store two 16x16 values

One 16x16 block: 84 cycles
Two 16x16 blocks: 68 cycles

Memory Access
FFFFOOOO0h

=N

FFFFOO10h
FFFF23A0h
FF2A14BCh
FFF701AQOh
FFFFO110h
FF2A1943h
FFFFO1AOh

2
3
4
5
6
7
8
9

FF4D2042h

FF3700E7h

-
o

e Assume Level 1 Cache only, which uses SRAM so speed is comparable to
registers (say 2 cycles); Assume main memory requires 10 cycles

Cache
Cache

Cache
Main
Main

Cache
Main

Cache
Main

Main

Simple Simulation

L1 Cache

Without Cache: 10 x 10 = 100 cycles
Cache has 1 block, can one two 164 values

One 16x16 block: 84 cycles
Two 16x16 blocks: 68 cycles
One 164 blocks: 60 cycles

Cache Management

e Factors to consider:

e Cache is almost always managed by hardware, OS and programmes usually
cannot manipulate cache directly

e Size of cache (vs cost)

 Partitioning of Cache: e.g. how much for a block, division between
Instructions and data, etc.

e Multiple levels of Cache: Modern CPU in addition to above, has also
multiple levels of cache: L1 is the fastest, sometimes inside the CPU chip,
then L2 L3 could be in the CPU or on the motherboard

P2
Cache

Specialised Caches

e |nstruction cache vs data cache

* Instruction cache contains computer programme instructions
This part is often read-only, and always put inside Cache for the fastest
possible access

» Data cache contains computer programme data, data structures,
variables, dynamically allocated memory, etc.
This part is RW, and can be shifted in and outside of Cache dynamically

e Why does it matter? Shifting anything between memory and cache takes
time, we want to focus on data cache optimisation

P2
Cache

Specialised Caches

Instruction
Cache

Data

ammnd Hard Drive

CPU

Cache

e C/C++: constant variables vs variables
const variables are stored in instruction cache, data cache can be moved In

and out of the main memory more often, so can be a little slower at times

1. Depends on hardware application

P3

Multi-Level Cache

Multi-Level Cache

L1-L3 Cache

e Modern Computers have multiple levels of cache, very commonly 3 levels
e L1: Located on the CPU die

e | 2: On CPU or motherboard

e | 3. More commonly on the motherboard

L1-L3 Cache

e Multi-Level cache parameters
e Cache latency: L1 has the fastest latency, L2 next, L3 slowest
 Hit rate vs Miss rate
e Hit: the memory address | am trying to access is inside the cache
e Miss: the memory address | am trying to access is not in the cache

e Multi-level: e.g.: L1 miss, L2 miss, L3 hit, retrieve from L3, etc.

Cache Entries: #1

e Address comes in:
e |1 hit: CPU proceeds to read from L1 cache;

e carry on;

Cache Entries: #2

e Address comes In:
e | 1 miss: proceed to L2;

e |2 hit;
entry is copied to L1, if necessary replacing the most ancient entry in L1;

e CPU proceeds to read from L1;

e carry on;

Cache Entries: #3

e Address comes In;
e |1 miss: proceed to L2;
e | 2 miss: proceed to L3;

e |3 hit:
entry Is copied to L2, if necessary replacing most ancient entry in L2;
entry is then copied to L1 from L2, if necessary replacing most ancient entry in L1;

* CPU proceeds to read from L1;

e carry on;

Cache Entries: #4

 Address comes In:
e |1 miss: proceed to L2;
e | 2 miss: proceed to L3;
|3 miss: proceed to main memory;

 Entry is copied to L3, if necessary replacing most ancient entry in L3;
entry is copied to L2 from L3, if necessary replacing most ancient entry in L2;
entry is copied to L1 from L2, if necessary replacing most ancient entry in L1;

e CPU proceeds to read from L1;

* carry on;

Lab 2 Part 3

Lab 2 Part 3

e Cache simulator
e Simulate cache operations
e Parameters: L1 speed/size, L2 speed/size, L3 speed/size

e |ist of memory addresses to access, output hit and miss rates, and
estimation of total time needed to actually retrieve data

e Files: mycache.py, mycache test.py

Lab 2 Part 3

e Simple algorithm:
e A stack is maintained inside the Cache

e |f the target memory address is inside the Cache, it is accessed, you log the
latency

e |f the target memory address is not inside the Cache, remove the earliest
memory block from Cache, replace it with the target memory block, the you
log the latency

e See P3 of LS7 for detailed algorithm

