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Overview

• Focus: Course Introduction


• Architecture: Logical Circuits


• Textbook: LW Chapter 7


• Core Ideas:


1. More VHDL: Concurrent Statements



Why FPGA?
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So far, in VHDL

• You’ve used signal to declare new variables


• You’ve use logical/arithmetics similar to Register Transferring Operations


• You’ve built components in VHDL


• Let’s provide you with more detailed explanation of how VHDL works
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FPGA
• Field Programmable Gate Arrays


• Embedded system (development)


• Programmable logical circuit


• Contains Arrays of Logical gates (a lot of LUTs, 
like truth tables)


• Logical gates are connected with reconfigurable 
routing networks


• Other components: RAM, etc…
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Why FPGA

• Real circuits with physical gates are GOOD


• But you need to make a new one every time you change your design, that’s 
very very very expensive


• Impractical for quick implementation and testing


• FPGAs are more expensive, but reconfigurable in the field (hence the name), 
with minimal punishment in performance (delays, heat, energy consumption, 
etc.)
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1. Here’s a youtube clip: https://www.youtube.com/watch?v=G2uYU7aD698
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Use cases: Parallel Computing
• Computer CPUs are traditionally NOT parallel


• Solution1: more cores  
You can only have so many cores (currently hundreds in a single chip) 
Con: expensive, wasteful, energy hungry, hard to maintain


• Solution 2: coprocessors  
For multi-media, you have decoders; for rendering and matrix arithmetics, you have 
GPUs (thousands of arithmetic units in a single chip) 
Con: very very application specific


• Solution 3: FPGA  
Programmable, highly parallel, as sophisticated as CPUs yet reconfigurable 
Con: not a lot of people knows how to use it? 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Use cases: Hardware Emulation
• Everything dies, including microchips


• Vintage computers and gaming consoles


• ECUs in cars


• Controllers for hardware instruments


• Some of these can be remanufactured, but that’s very expensive


• Some of these can be emulated, but you’ll take a hit on performance and bugs can be 
unavoidable (accounting for physical gating delays using software is difficult)


• FPGAs are relatively inexpensive in comparison, and can have identical performance (or better) 
without software emulation issues
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In Short
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💰(VHDL) > 💰(Python+C+WebDev)



More about VHDL
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Comments

• C/C++ 
// this is a comment


• Python 
# this is a comment


• VHDL 
-- this is a comment
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Numbers
• Integer Literals


• e.g. -1, 2, 42


• Real Literals


• e.g. 3.1415926535


• Bits and Bit strings


• Single bit: '0', '1', double quote also works but not recommended


• Binary starts with B, e.g. B"0100011" 

• Hexadecimal starts with X, e.g. X"12CB"
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Types of Objects
• signal: inputs, outputs, intermediates (temporary holders)


• These are like individual physical wires in a circuit


• Use <= to perform assignment


• constant & variable: same as in programming languages


• Use := to perform assignment


• You typically cannot use variables a lot of the time, so just avoid it for 
now
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std_logic and std_ulogic
• These are signal types, requires IEEE 1164 package


• Can represent the values ->


• When things are working correctly, you should just 
see 0 or 1


• std_ulogic doesn’t resolve driver conflicts,  and 
when it occurs will result in compilation/synthesis 
error


• std_ulogic resolves driver conflicts using a 
resolution table


• In short, just use std_logic

1 Logic 1

0 Logic 0

Z High impedance

W Weak signal, can’t tell if 0 or 1

L Weak 0, pulldown

H Weak 1, pullup

- Don’t care

U Uninitialized

X Unknown, multiple drivers
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std_logic and std_ulogic

• This is driver conflict: multiple sources providing values to a single signal
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architecture arch1 of bruh is 
    signal x : std_logic; 
begin 
   
    -- Driver A 
    x <= '0'; 
   
    -- Driver B 
    x <= '1' after 20 ns; 
       
end architecture;
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References

• https://www2.cs.sfu.ca/~ggbaker/reference


• Greg Baker is a senior lecturer at SFU, he created this page 20 years ago for 
common std_logic libraries


• He also hosts a few std_logic library source codes by Synopsys, very 
readable


• If you ever have error from compilation such as conversion issues etc., you 
can look at these libraries to find out what’s supported and what’s not
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Concurrent Stuff: 
Generate Statements
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Concurrent vs Sequential
• Just like in CSCI150, in VHDL you can design combinational circuits, and 

sequential circuits


• For CSCI250, we’ll continue this. When you are using VHDL, we’ll have two 
different kinds of statements:


• Concurrent statements 
Everything is executed concurrently, this implements a combinational circuit


• Sequential statements 
Everything is executed sequentially, like programming language statements


• Unless otherwise specified, we use concurrent statements ONLY for now

Conc
ep

t

P0 
XXXXXXX

P3 
Generators



Here’s a little something you 
want

• In Lab 1 part 2, you may or may not need to make a std_logic signal into 
std_logic_vector.


• How should you do this?
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Option 1: Brute-force

• Type an assignment for every digit
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... 
signal a: std_logic; 
... 
signal tmp: std_logic_vector(127 downto 0); 
... 
begin 
    tmp(0) <= a; 
    tmp(1) <= a; 
    tmp(2) <= a; 
    tmp(3) <= a; 
...



Option 2: Use Python

• Use a python script to write the code for you
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> script.py 
with open("driver.vhdl", "a") as f: 
    for i in range(128): 
        f.write(f"temp({i}) <= a;\n")



Option 3: Use Generate 
Statements

• Do the same thing as Option 2, but let the VHDL compiler do it for you


• Two types:


• for-generate statement


• if-generate statement


• Big issue: LogicWorks doesn’t support this… boooooo
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for-generate Statement

• label: could be named anything that’s a valid identifier


• VAR: variable, like i; RANGE: e.g. 0 to 10, 10 downto 0 

• Equivalent to typing things out like in Option 1, or using Python to generate the code 
in Option 2
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label: for VAR in RANGE generate 
    --concurrent statements here  
end generate;



if-generate Statement

• CONDITION: an expression that gives a boolean value, e.g. i < 0


• On the hardware side, you can implement the same idea using a 3-state buffer 
(beware of driver conflict) 
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label: if CONDITION generate 
    --concurrent statements here  
end generate;


