
20.09.24 17:37

CSCI 250
Introduction to Computer Organisation

Lecture 1: Beyond Integer Arithmetics IV

Jetic Gū

2024 Fall Semester (S3)

Overview

• Focus: Course Introduction

• Architecture: Logical Circuits

• Textbook: LW Chapter 7

• Core Ideas:

1. More VHDL: Concurrent Statements

Why FPGA?

P1
FPGA

So far, in VHDL

• You’ve used signal to declare new variables

• You’ve use logical/arithmetics similar to Register Transferring Operations

• You’ve built components in VHDL

• Let’s provide you with more detailed explanation of how VHDL works

Rev
iew

P1
FPGA

FPGA
• Field Programmable Gate Arrays

• Embedded system (development)

• Programmable logical circuit

• Contains Arrays of Logical gates (a lot of LUTs,
like truth tables)

• Logical gates are connected with reconfigurable
routing networks

• Other components: RAM, etc…

Conc
ep

t

P1
FPGA

Why FPGA

• Real circuits with physical gates are GOOD

• But you need to make a new one every time you change your design, that’s
very very very expensive

• Impractical for quick implementation and testing

• FPGAs are more expensive, but reconfigurable in the field (hence the name),
with minimal punishment in performance (delays, heat, energy consumption,
etc.)

Conc
ep

t

1. Here’s a youtube clip: https://www.youtube.com/watch?v=G2uYU7aD698

P1
FPGA

https://www.youtube.com/watch?v=G2uYU7aD698

Use cases: Parallel Computing
• Computer CPUs are traditionally NOT parallel

• Solution1: more cores  
You can only have so many cores (currently hundreds in a single chip) 
Con: expensive, wasteful, energy hungry, hard to maintain

• Solution 2: coprocessors  
For multi-media, you have decoders; for rendering and matrix arithmetics, you have
GPUs (thousands of arithmetic units in a single chip) 
Con: very very application specific

• Solution 3: FPGA  
Programmable, highly parallel, as sophisticated as CPUs yet reconfigurable 
Con: not a lot of people knows how to use it? 

Te
ch

nic
al

P0
XXXXXXX

P1
FPGA

Use cases: Hardware Emulation
• Everything dies, including microchips

• Vintage computers and gaming consoles

• ECUs in cars

• Controllers for hardware instruments

• Some of these can be remanufactured, but that’s very expensive

• Some of these can be emulated, but you’ll take a hit on performance and bugs can be
unavoidable (accounting for physical gating delays using software is difficult)

• FPGAs are relatively inexpensive in comparison, and can have identical performance (or better)
without software emulation issues

Te
ch

nic
al

P0
XXXXXXX

P1
FPGA

In Short

Te
ch

nic
al

P0
XXXXXXX

P1
FPGA

💰(VHDL) > 💰(Python+C+WebDev)

More about VHDL

P2
More VHDL

Comments

• C/C++ 
// this is a comment

• Python 
this is a comment

• VHDL 
-- this is a comment

Te
ch

nic
al

P2
More VHDL

Numbers
• Integer Literals

• e.g. -1, 2, 42

• Real Literals

• e.g. 3.1415926535

• Bits and Bit strings

• Single bit: '0', '1', double quote also works but not recommended

• Binary starts with B, e.g. B"0100011"

• Hexadecimal starts with X, e.g. X"12CB"

Te
ch

nic
al

P2
More VHDL

Types of Objects
• signal: inputs, outputs, intermediates (temporary holders)

• These are like individual physical wires in a circuit

• Use <= to perform assignment

• constant & variable: same as in programming languages

• Use := to perform assignment

• You typically cannot use variables a lot of the time, so just avoid it for
now

Te
ch

nic
al

P2
More VHDL

Types of Objects
• signal: inputs, outputs, intermediates (temporary holders)

• These are like individual physical wires in a circuit

• Use <= to perform assignment

• constant & variable: same as in programming languages

• Use := to perform assignment

• You typically cannot use variables a lot of the time, so just avoid it for
now

Te
ch

nic
al

P2
More VHDL

std_logic and std_ulogic
• These are signal types, requires IEEE 1164 package

• Can represent the values ->

• When things are working correctly, you should just
see 0 or 1

• std_ulogic doesn’t resolve driver conflicts, and
when it occurs will result in compilation/synthesis
error

• std_ulogic resolves driver conflicts using a
resolution table

• In short, just use std_logic

1 Logic 1

0 Logic 0

Z High impedance

W Weak signal, can’t tell if 0 or 1

L Weak 0, pulldown

H Weak 1, pullup

- Don’t care

U Uninitialized

X Unknown, multiple drivers

Te
ch

nic
al

P2
More VHDL

std_logic and std_ulogic

• This is driver conflict: multiple sources providing values to a single signal

Te
ch

nic
al

architecture arch1 of bruh is
 signal x : std_logic;
begin

 -- Driver A
 x <= '0';

 -- Driver B
 x <= '1' after 20 ns;

end architecture;

P2
More VHDL

References

• https://www2.cs.sfu.ca/~ggbaker/reference

• Greg Baker is a senior lecturer at SFU, he created this page 20 years ago for
common std_logic libraries

• He also hosts a few std_logic library source codes by Synopsys, very
readable

• If you ever have error from compilation such as conversion issues etc., you
can look at these libraries to find out what’s supported and what’s not

Te
ch

nic
al

P2
More VHDL

https://www2.cs.sfu.ca/~ggbaker/reference

Concurrent Stuff:
Generate Statements

P3
Generators

Concurrent vs Sequential
• Just like in CSCI150, in VHDL you can design combinational circuits, and

sequential circuits

• For CSCI250, we’ll continue this. When you are using VHDL, we’ll have two
different kinds of statements:

• Concurrent statements 
Everything is executed concurrently, this implements a combinational circuit

• Sequential statements 
Everything is executed sequentially, like programming language statements

• Unless otherwise specified, we use concurrent statements ONLY for now

Conc
ep

t

P0
XXXXXXX

P3
Generators

Here’s a little something you
want

• In Lab 1 part 2, you may or may not need to make a std_logic signal into
std_logic_vector.

• How should you do this?

Te
ch

nic
al

P0
XXXXXXX

P3
Generators

Option 1: Brute-force

• Type an assignment for every digit

Te
ch

nic
al

P0
XXXXXXX

P3
Generators

...
signal a: std_logic;
...
signal tmp: std_logic_vector(127 downto 0);
...
begin
 tmp(0) <= a;
 tmp(1) <= a;
 tmp(2) <= a;
 tmp(3) <= a;
...

Option 2: Use Python

• Use a python script to write the code for you

Te
ch

nic
al

P0
XXXXXXX

P3
Generators

> script.py
with open("driver.vhdl", "a") as f:
 for i in range(128):
 f.write(f"temp({i}) <= a;\n")

Option 3: Use Generate
Statements

• Do the same thing as Option 2, but let the VHDL compiler do it for you

• Two types:

• for-generate statement

• if-generate statement

• Big issue: LogicWorks doesn’t support this… boooooo

Te
ch

nic
al

P0
XXXXXXX

P3
Generators

for-generate Statement

• label: could be named anything that’s a valid identifier

• VAR: variable, like i; RANGE: e.g. 0 to 10, 10 downto 0

• Equivalent to typing things out like in Option 1, or using Python to generate the code
in Option 2

Te
ch

nic
al

P0
XXXXXXX

P3
Generators

label: for VAR in RANGE generate
 --concurrent statements here
end generate;

if-generate Statement

• CONDITION: an expression that gives a boolean value, e.g. i < 0

• On the hardware side, you can implement the same idea using a 3-state buffer 
(beware of driver conflict)

Te
ch

nic
al

P0
XXXXXXX

P3
Generators

label: if CONDITION generate
 --concurrent statements here
end generate;

