CSCI 250
Introduction to Computer Organisation
Lecture 1: Beyond Integer Arithmetics IV

Jetic Gu
2024 Fall Semester (S3)

Overview

Focus: Course Introduction
Architecture: Logical Circuits
Textbook: LW Chapter 7
Core ldeas:

1. More VHDL: Concurrent Statements

Why FPGA?

P1
FPGA

So far, in VHDL

e You’'ve used signal to declare new variables
e You’ve use logical/arithmetics similar to Register Transferring Operations
e You’ve built components in VHDL

e | et’s provide you with more detailed explanation of how VHDL works

FPGA

e Field Programmable Gate Arrays

O T8 T i . ,
A H ! -l- [f E{ = ‘/
SV IN umr ' uss : | : ~, ! | I ' l jtﬂ \

e Embedded system (development) ,%«:’]a« :,, ' .

* Programmable logical circuit

» Contains Arrays of Logical gates (a lot of LUTs, | i

Pk o

like truth tables) e agm e R

u.,u.LJ.:J lu.l ,&q.lo.q‘
)

 |ogical gates are connected with reconfigurable
routing networks

e Other components: RAM, etc...

Why FPGA

e Real circuits with physical gates are GOOD

e But you need to make a new one every time you change your design, that’s
VEry Very very expensive

e |mpractical for quick implementation and testing

e FPGAs are more expensive, but reconfigurable in the field (hence the name),
with minimal punishment in performance (delays, heat, energy consumption,
etc.)

1. Here’s a youtube clip: https://www.youtube.com/watch?v=G2uYU7aD698

https://www.youtube.com/watch?v=G2uYU7aD698

I Use cases: Parallel Computing

e Computer CPUs are traditionally NOT parallel

e Solution1: more cores
You can only have so many cores (currently hundreds in a single chip)
Con: expensive, wasteful, energy hungry, hard to maintain

e Solution 2: coprocessors
For multi-media, you have decoders; for rendering and matrix arithmetics, you have
GPUs (thousands of arithmetic units in a single chip)
Con: very very application specific THAT'S SOME__.

e Solution 3: FPGA
Programmable, highly parallel, as sophisticated as CPUs yet reconfigurable
Con: not a lot of people knows how to use it?

I Use cases: Hardware Emulation

 Everything dies, including microchips
* Vintage computers and gaming consoles
e ECUs Iin cars

e Controllers for hardware instruments

e Some of these can be remanufactured, but that’s very expensive

e Some of these can be emulated, but you’ll take a hit on performance and bugs can be
unavoidable (accounting for physical gating delays using software is difficult)

» FPGAs are relatively inexpensive in comparison, and can have identical performance (or better)
without software emulation issues

In Short

(VHDL) > & (Python+C+WebDeV)

More about VHDL

Comments

o C/C++

// this 1s a comment

e Python

this 1s a comment

e VHDL

—— this 1s a comment

Numbers

e Integer Literals
e e.g.-1,2,42
* Real Literals
e e.g.3.1415926535
e Bits and Bit strings
e Singlebit: '0', '1', double quote also works but not recommended

e Binary starts with B, e.g. B"0100011"

e Hexadecimal starts with X, e.g. X" 12CB"

P2
More VHDL

e signal: inputs, outputs, intermediates (temporary holders)

Types of Objects

e [hese are like individual physical wires In a circuit

e Use <= to perform assignment
e constant & variable: same as in programming languages

e Use :=to perform assignment

e You typically cannot use variables a lot of the time, so just avoid it for
Nnow

P2
More VHDL

e signal: inputs, outputs, intermediates (temporary holders)

Types of Objects

e [hese are like individual physical wires In a circuit

e Use <= to perform assignment
e constant & variable: same as in programming languages

e Use :=to perform assignment

e You typically cannot use variables a lot of the time, so just avoid it for
Nnow

Std_lcgic and std ulogic

* These are signal types, requires IEEE 1164 package Logic 1

Logic O
e Can represent the values ->

High impedance
* When things are working correctly, you should just

see 0 or 1 Weak signal, can’t tell if O or 1

e std ulogic doesn’t resolve driver conflicts, and
when it occurs will result in compilation/synthesis

Weak 0, pulldown

error Weak 1, pullup
e std ulogic resolves driver conflicts using a Don’t care
resolution table s
Uninitialized

* In short, just use std_logic Unknown, multiple drivers

Std_lcgic and std ulogic

architecture archl of bruh 1is
signal x : std logic;
begilin

—— Driver A
x <= '0";

—— Driver B
x <= 'l'" after 20 ns;

end architecture;

e This is driver conflict: multiple sources providing values to a single signal

References

e https://www?2.cs.sfu.ca/~ggbaker/reference

e (Greg Baker is a senior lecturer at SFU, he created this page 20 years ago for
common std logic libraries

e He also hosts a few std logic library source codes by Synopsys, very
readable

e |f you ever have error from compilation such as conversion issues etc., you
can look at these libraries to find out what’s supported and what’s not

https://www2.cs.sfu.ca/~ggbaker/reference

Concurrent Stuff:
Generate Statements

Concurrent vs Sequential

e Just like in CSCI150, in VHDL you can designh combinational circuits, and
sequential circuits

e For CSCI250, we’ll continue this. When you are using VHDL, we’ll have two
different kinds of statements:

e Concurrent statements
Everything is executed concurrently, this implements a combinational circuit

e Sequential statements
Everything is executed sequentially, like programming language statements

 Unless otherwise specified, we use concurrent statements ONLY for now

Here’s a little something you
Generators Wa n t

e |InLab 1 part 2, you may or may not need to make a std logic signal into
std logic vector.

e How should you do this?

P3
Generators

signal a: std logic;

Option 1: Brute-force

signal tmp: std logic vector (127 downto 0);

tmp (0) <= a;
tmp (1) <= a;
tmp (2) <= a;
tmp (3) <= a;

e [Jype an assignment for every digit

Option 2: Use Python

> script.py
with open ("driver.vhdl", "a") as f:
for 1 1n range(128):
f.write(f"temp ({i}) <= a;\n")

e Use a python script to write the code for you

Option 3: Use Generate
Statements

e Do the same thing as Option 2, but let the VHDL compiler do it for you
e [wo types:

e for-generate statement
e if-generate statement

e Big issue: LogicWorks doesn’t support this... booooo00

f or-generate Statement

label: for VAR 1n RANGE generate
——concurrent statements here
end generate;

e label: could be named anything that’s a valid identifier

e VAR: variable, like 1; RANGE: e.g. 0 to 10,10 downto O

e Equivalent to typing things out like in Option 1, or using Python to generate the code
in Option 2

g 1f-generate Statement

label: 1f CONDITION generate
——concurrent statements here
end generate;

e CONDITION: an expression that gives a boolean value, e.g. i < 0

e On the hardware side, you can implement the same idea using a 3-state buffer
(beware of driver conflict)

