
17.09.24 17:15

CSCI 250
Introduction to Computer Organisation

Lecture 1: Beyond Integer Arithmetics III

Jetic Gū

2024 Fall Semester (S3)

Overview
• Focus: Course Introduction

• Architecture: Logical Circuits

• Textbook: LW Chapter 7

• Core Ideas:

1. VHDL, Binary Adder

2. Lab 1 Part 2: Adder-Subtractor

VHSIC Hardware
Description Language

P1
VHDL

What is HDL
• Programming Languages: e.g. Python, C, C++

• Compiles/Interprets to machine code

• Executed sequentially by a CPU

• Hardware Description Language: VHDL, Verilog

• Describes hardware logic, how gates are connected

• Loaded onto FPGA board, fully parallel (because it’s a real circuit)

Conc
ep

t

P0
XXXXXXX

P1
VHDL

HDL IDE Platforms
• AMD Xilinx

• [Chipset] Spartan 6-: ISE Suite

• [Chipset] Spartan 7+: Vivado

• Intel Altera FPGA: Quartus Prime

• This is the industry standard, not as easy to get into

• Future CSCI250? For now, we’ll use LogicWorks

Te
ch

nic
al

P0
XXXXXXX

P1
VHDL

Previous: Register Transfer
Operations (VHDL Syntax)

Rev
iew

Operator Example

Assignment <= ax <= 12h

Reg. Transfer <= ax <= bx

Addition + ax + bx

Subtraction - ax - bx

Shift Left sll ax sll 2

Shift Right srl ax srl 2

Operator Example

Bitwise AND and ax and bx

Bitwise OR or ax or bx

Bitwise NOT not not ax

Bitwise XOR xor ax xor bx

Vectors ax(3 down to 0) ax(3 down to 0)

Concatenate & ax(7 down to 4)
&ax(3 down to 0)

P1
VHDL

Previous: 1-bit Half Adder

• Create a new component in VHDL called
HalfAdder1

• Input: X, Y

• Output: S, C

• Don’t use AFTER

Prac
tic

e

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd 158 23/01/15 1:51 PM

P1
VHDL

Previous: 1-bit Half Adder

architecture arch1 of HalfAdder is

begin

 S <= X XOR Y;

 C <= X AND Y;

end arch1;

Prac
tic

e

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd 158 23/01/15 1:51 PM

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

1. Select Model Wizard… from Welcome, or from File->New

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

2. Select Create a new, empty model; Select Create a new symbol with the specified model attached; Select Next

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

3. Select VHDL; Type in name Adder1Bit, the name cannot contain whitespace; Select Next

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

4. Use Function, Name, and << Add Single Bit to include XYZSC in the list of pins; Select Next

P1
VHDL

Name Func Left Right

X In

Y In

Z In

S Out

C Out

1bit Binary Adder

Tu
toria

l 1

5. Select Next

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

6. Create a library called CSCI250; Select Finish

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

7. Save Adder1Bit.dwv;

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

8. This is what your VHDL code looks like

P1
VHDL

1bit Binary Adder

Tu
toria

l 1

8. This is what your VHDL code looks like

P1
VHDL

 library IEEE;
 use IEEE.std_logic_1164.all;

 entity Adder1Bit is

 port(
 Z : in std_logic;
 X : in std_logic;
 Y : in std_logic;
 S : out std_logic;
 C : out std_logic
);

 end Adder1Bit;

 architecture arch1 of Adder1Bit is

 begin

 -- Your VHDL code defining the model goes here

 end arch1;

• In VHDL, every expressions should
end with semi-colon unless
otherwise required

• This is the library bit, just like
#include <…> or import from
C++/Python

1bit Binary Adder

Tu
toria

l 1

9. Design Entity

P1
VHDL

 library IEEE;
 use IEEE.std_logic_1164.all;

 entity Adder1Bit is

 port(
 Z : in std_logic;
 X : in std_logic;
 Y : in std_logic;
 S : out std_logic;
 C : out std_logic
);

 end Adder1Bit;

 architecture arch1 of Adder1Bit is

 begin

 -- Your VHDL code defining the model goes here

 end arch1;

• This is where you define your
design entity

• A design entity can be a chip, a
board, or a single transistor 
We’ll mostly concentrate on chips/
boards

• This part here defines the
interface (I/O) of your component

• You do NOT need to modify this

1bit Binary Adder

Tu
toria

l 1

10. Concurrent Statements 1

P1
VHDL

 library IEEE;
 use IEEE.std_logic_1164.all;

 entity Adder1Bit is

 port(
 Z : in std_logic;
 X : in std_logic;
 Y : in std_logic;
 S : out std_logic;
 C : out std_logic
);

 end Adder1Bit;

 architecture arch1 of Adder1Bit is

 begin

 -- Your VHDL code defining the model goes here

 end arch1;

• Concurrent Statement 
Concurrent means parallel, there’s
no execution order, everything
happens all at once

• This is where you will start coding

• arch1 here is a label for this
specific design of Adder1Bit.
There might be multiple
architectures that share the same
IO. Important? Not to us as of right
now

1bit Binary Adder

Tu
toria

l 1

10. Concurrent Statements 2

P1
VHDL

• This is a 1bit binary full adder 

S1

C1

C2

S1 = X ⊕ Y; S = S1 ⊕ Z; C1 = XY; C2 = S1Z; C = C1 ⊕ C2

1bit Binary Adder

Tu
toria

l 1

10. Concurrent Statements 3; Save

P1
VHDL

 architecture arch1 of
Adder1Bit is

 signal s1, c1, c2: std_logic;

 begin

 s1 <= (x xor y);
 s <= s1 xor z;
 c1 <= x and y;
 c2 <= z and s1;
 c <= c1 xor c2;

 end arch1;

• Temporary labels 
Declared before begin, variables
that are neither Input nor Output

• Use signal, datatype
std_logic; 
This is for a single bit

• Expressions

• Same syntax as we discussed in
Register Microoperations, but in
this case all labels are single bits

S1 = X ⊕ Y; S = S1 ⊕ Z; C1 = XY; C2 = S1Z; C = C1 ⊕ C2

1bit Binary Adder

Tu
toria

l 1

10. Concurrent Statements 3; Save

P1
VHDL

 architecture arch1 of
Adder1Bit is

 signal s1, c1, c2: std_logic;

 begin

 s1 <= (x xor y);
 s <= s1 xor z;
 c1 <= x and y;
 c2 <= z and s1;
 c <= c1 xor c2;

 end arch1;

• Temporary labels 
Declared before begin, variables
that are neither Input nor Output

• Use signal, datatype
std_logic; 
This is for a single bit

• Expressions

• Same syntax as we discussed in
Register Microoperations, but in
this case all labels are single bits

S1 = X ⊕ Y; S = S1 ⊕ Z; C1 = XY; C2 = S1Z; C = C1 ⊕ C2

1bit Binary Adder

Tu
toria

l 1

11. Simulation

P1
VHDL

• Simulation: use the implemented component as just any other component

VHDL in LogicWorks
Buses

P2
Buses

16bit Binary Adder

Tu
toria

l 2

1. Select VHDL; Type in name Adder16Bit, the name cannot contain whitespace; Select Next

P2
Buses

16bit Binary Adder

2. Use Function, Name, and << Add Vector in addition to single bits to include XYZSC in the list of pins/buses; Select Next

P2
Buses

Name Func Left Right

X In 15 0

Y In 15 0

Z In

S Out 15 0

C Out

Tu
toria

l 2

16bit Binary Adder

3. This is what your VHDL code looks like

P1
VHDL

 library IEEE;
 use IEEE.std_logic_1164.all;

 entity Adder16bit is

 port(
 Z : in std_logic;
 Y : in std_logic_vector(15 downto 0);
 X : in std_logic_vector(15 downto 0);
 C : out std_logic;
 S : out std_logic_vector(15 downto 0)
);

 end Adder16bit;

 architecture arch1 of Adder16bit is

 begin

 -- Your VHDL code defining the model goes here

 end arch1;

• Notice the difference

• std_logic is for single bits

• std_logic_vector is for
buses

• How can we design the adder?

• Use Addition from register
microoperations!

Tu
toria

l 2

16bit Binary Adder

4. Add std_logic_arith.all from IEEE library; Use addition in your code

P1
VHDL

 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_arith.all;

 …

 architecture arch1 of Adder16bit
is

 begin

 S <= X + Y + Z;

 end arch1;

• Add a Package from Library

• How can we design the adder?

• Use Addition from register
microoperations!

Tu
toria

l 2

16bit Binary Adder

5. Simulation

P1
VHDL

• For all VHDL vectors, the
corresponding buses must have
matching names

• E.g. X bus in Adder16bit should
have bus X_0..15. Don’t forget the
underscore.

• There is a bug with the IO panel, I
am investigating it

• Notice that C output doesn’t work
now. Solution?

Tu
toria

l 2

16bit Binary Adder

5. Simulation

P1
VHDL

• For all VHDL vectors, the
corresponding buses must have
matching names

• E.g. X bus in Adder16bit should have
bus X_0..15. Don’t forget the
underscore.

• There is a bug with the IO panel, I am
investigating it

• Notice that C output doesn’t work now.
Solution? (Hint: use concatenation &
vector)

Tu
toria

l 2

LAB 1 Part 2
A VHDL Exercise

P3
LAB 1

LAB 1 Part 2
A VHDL Exercise

• Task 1: Implement Adder16bit.dwv,
save it in CSCI250.clf

• Find a way to make C output the
correct value

• You must show Adder16bit
working in circuit1.cct

Conc
ep

t

P3
LAB 1

Name Func Left Right

X In 15 0

Y In 15 0

Z In

S Out 15 0

C Out

LAB 1 Part 2
A VHDL Exercise

• Task 2: Implement
AddSub16bit.dwv, save it in
CSCI250.clf

• This is an adder subtractor. AS is
short for notAdd/Sub

• You must show AddSub16bit
working in circuit2.cct

Conc
ep

t

P3
LAB 1

Name Func Left Right

X In 15 0

Y In 15 0

AS In

O Out 15 0

C Out

