CSCI 250 Introduction to Computer Organisation Lecture 1: Beyond Integer Arithmetics III

Jetic Gū 2024 Fall Semester (S3)

Overview

- Focus: Course Introduction
- Architecture: Logical Circuits
- Textbook: LW Chapter 7
- Core Ideas:
 - 1. VHDL, Binary Adder
 - 2. Lab 1 Part 2: Adder-Subtractor

VHSIC Hardware Description Language

What is HDL

P1 VHDL

- Programming Languages: e.g. Python, C, C++
 - Compiles/Interprets to machine code
 - Executed sequentially by a CPU
- Hardware Description Language: VHDL, Verilog
 - Describes hardware logic, how gates are connected
 - Loaded onto FPGA board, fully parallel (because it's a real circuit)

HDL IDE Platforms

- AMD Xilinx
 - [Chipset] Spartan 6-: ISE Suite
 - [Chipset] Spartan 7+: Vivado
- Intel Altera FPGA: Quartus Prime
- This is the industry standard, not as easy to get into
- Future CSCI250? For now, we'll use LogicWorks

Previous: Register Transfer Operations (VHDL Syntax)

	P1
VH	DL

	Operator	Example		Operator	Example
Assignment	<=	ax <= 12h	Bitwise AND	and	ax and bx
Reg. Transfer	<=	ax <= bx	Bitwise OR	or	ax or bx
Addition	+	ax + bx	Bitwise NOT	not	not ax
Subtraction	_	ax – bx	Bitwise XOR	xor	ax xor bx
Shift Left	sll	ax sll 2	Vectors	ax(3 down to 0)	ax(3 down to 0)
Shift Right	srl	ax srl 2	Concatenate	&	ax(7 down to 4) &ax(3 down to 0)

Previous: 1-bit Half Adder

- Create a new component in VHDL called HalfAdder1
 - Input: X, Y
 - Output: S, C
 - **Don't use** AFTER

Previous: 1-bit Half Adder

architecture arch1 of HalfAdder is

begin

 $S \ll X X OR Y;$

 $C \ll X AND Y;$

end arch1;

• • •	Welcome to LogicWorks	
	Create a new, empty circuit Create a new circuit diagram	Create
	Open an Example File Open one of the example files provided with LogicWorks.	Examples
Open an Existing Design Z:\Volumes\Schwarloads\Su Z:\Volumes\Schwar6\lab3cs Z:\Volumes\Schwar6\lab3cs Z:\Volumes\Schwar6\lab3cs Z:\Volumes\Schwa\lab3csci Z:\Volumes\Schwa\lab3csci	ubmission3\Circuit2.cct sci150mann\circuit7.cct sci150mann\circuit6.cct sci150mann\circuit4.cct sci150mann\circuit2.cct 150mann\circuit1-2.cct 150mann\circuit1-1.cct	Open Browse
Create a Simulation Model Use the Model Wizard to defir either VHDL or a circuit diagra	ne a new simulation model using am.	Model Wizard
-Continue with No Circuit Open-		Cancel

1. Select Model Wizard... from Welcome, or from File->New

	New	
New		_ ОК
Text Document Device Symbol		Cancel
Model Wizard VHDL		
,		

1 bit Bin

P1 VHDL

2. Select Create a new, empty model; Select Create a new symbol with the specified model attached; Select Next

ary	Ad	lder
-----	----	------

ulation Model Wizard	
o define the port interface	
e	
nbol alone, with no model	
for schematic drawing ter.	
]
Jendent design	
pecified model attached	
ected device annu0	
< <u>B</u> ack <u>N</u> ext >	Cancel

3. Select VHDL; Type in name Adder1Bit, the name cannot contain whitespace; Select Next

Model Info

	_	

00

1 bit Binary Adder Model Port Interface

Use the controls at right to add pins to the Function interface list. NOTE: If you are attaching this model to an axisting device symbol, the interface list must exactly match the pins on the symbol. 🔿 Input 🖲 Output F... Let R... Name Bidirectional Ζ In In |C In Name S Out Out ⊢Vector Left Bit Number Right Bit Number << Add Vector >> Remove Drag and drop to re-order items in the < <u>B</u>ack Next > Cancel

4. Use Function, Name, and << Add Single Bit to include XYZSC in the list of pins; Select Next

N	lame	Func	Left	Right
	X	In		
	Y	In		
	Z	In		
	S	Out		
	С	Out		

You can now specify where on the symbol you would like the pins to be placed. To move pins, just drag and drop between the boxes representing the left, top, right and bottom of the

Left pins Y X Z	Top pins (left to	Right pins
	Bottom pins (left to right)	Symbol Label Adder 1Bit
		< <u>B</u> ack <u>N</u> ext > Cancel

5. Select Next

Pin Locations

 \Box Place the block immediately without saving it in a library. WARNING: If you cancel the place operation, you will have to start over.

Enter a name for the new part Adder1Bit

Select the existing library to save the block to or create a new one:

7400.clf Connectors.CLF SCI250.df Discretes.CLF Pseudo Devices.CLF Simulation Gates.clf Simulation IO.clf Simulation Logic.clf Spice.CLF VHDLPrims.clf

NOTE: Libraries marked as Read-Only are not shown in this list

Save Symbol

Open Lib
New Lib

< <u>B</u> ack	Finish	Cancel

1 bit Binary Adder

		Save As	
Save <u>i</u> n:	bogic Works	A A A A A A A A A A A A A A A A A	
	Lec 3		
Desktop	🛅 Lec 5		
Documents			
My Computer			
	File <u>n</u> ame:	Adder1Bit.dwv	<u>S</u> ave
	Files of <u>typ</u> e:	Text Files (*.*) ▼	Cancel

1 bit Binary Adder

	Logic
Eile Edit View VHDL Window Help	1
□ ☞ ■ ● ¾ № @ № ? ♀ ℚ ┡ ∖ A + + ⊠ ♡ ⊡ □ 非 ▲ ∘	
ĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨ	
<pre>library IEEE; use IEEE.std_logic_1164.all;</pre>	
entity Adder1Bit is	
port(
Z : in std_logic; X : in std_logic;	
Y in std_logic;	
S : out std_logic;	
);	
end Adder1Bit;	
architecture arch1 of Adder1Bit is	
begin	
Your VHDL code defining the model goes	her
end arch1;	
<	
Adder1Bit.dwv	
Ready	

8. This is what your VHDL code looks like

icWorks 5 - [Adder1Bit.dwv]

_ 0 ×

0 ns			
			Adder1Bit
			Preview
re	>	>	Filter: 74_F539.a 74_F539.b 74_F588 74_H71 74_L71 74_L85 7-Seg Disp - 7-Seg Disp 1 7-Seg D

1 bit Binary Adder

library IEEE; use IEEE.std_logic_1164.all;

```
entity Adder1Bit is
port(
    Z : in std_logic;
    X : in std_logic;
    Y : in std_logic;
    S : out std_logic;
    C : out std_logic
);
end Adder1Bit;
```

architecture arch1 of Adder1Bit is

begin

-- Your VHDL code defining the model goes here end arch1;

- In VHDL, every expressions should end with semi-colon unless otherwise required
- This is the library bit, just like #include <...> or import from
 C++/Python

1 bit Binary Adder

```
library IEEE;
use IEEE.std_logic_1164.all;
```

```
entity Adder1Bit is
port(
    Z : in std_logic;
    X : in std_logic;
    Y : in std_logic;
    S : out std_logic;
    C : out std_logic
);
end Adder1Bit;
```

architecture arch1 of Adder1Bit is

begin

-- Your VHDL code defining the model goes here end arch1;

9. Design Entity

- This is where you define your design entity
- A design entity can be a chip, a board, or a single transistor
 We'll mostly concentrate on chips/ boards
- This part here defines the interface (I/O) of your component
- You do **NOT** need to modify this

1 bit Binary Adder

```
library IEEE;
use IEEE.std_logic_1164.all;
entity Adder1Bit is
port(
```

```
Z : in std_logic;
X : in std_logic;
Y : in std_logic;
S : out std_logic;
C : out std_logic;
```

```
end Adder1Bit;
```

```
architecture arch1 of Adder1Bit is
begin
   -- Your VHDL code defining the model goes here
end arch1;
```

- Concurrent Statement
 Concurrent means parallel, there's no execution order, everything happens all at once
- This is where you will start coding
- arch1 here is a label for this specific design of Adder1Bit. There might be multiple architectures that share the same IO. Important? Not to us as of right now

• This is a 1bit binary full adder $S_1 = X \oplus Y; S = S_1 \oplus Z; C_1 = XY; C_2 = S_1Z; C = C_1 \oplus C_2$

P1 VHDL

10. Concurrent Statements 2

1 bit Binary Adder s **C**₂

The problem of the p

signal s1, c1, c2: std_logic;

begin

end arch1;

- Temporary labels
 Declared before begin, variables
 that are neither Input nor Output
 - Use signal, datatype std_logic;
 This is for a single bit
- Expressions
 - Same syntax as we discussed in Register Microoperations, but in this case all labels are single bits

The problem of the p

signal s1, c1, c2: std_logic;

begin

end arch1;

- Temporary labels
 Declared before begin, variables
 that are neither Input nor Output
 - Use signal, datatype std_logic;
 This is for a single bit
- Expressions
 - Same syntax as we discussed in Register Microoperations, but in this case all labels are single bits

• Simulation: use the implemented component as just any other component

11. Simulation

VHDL in LogicWorks Buses

Select the desired model type

ou uctural Sircuit

Enter a name for the new

1. Select VHDL; Type in name Adder16Bit, the name cannot contain whitespace; Select Next

Model Info

 -	

Create a VHDL language file which can be used to describe the function of this device.

000

16bit Binary Adder

Model Port Interface

2. Use Function, Name, and << Add Vector in addition to single bits to include XYZSC in the list of pins/buses; Select Next

Name	Func	Left	Right
X	In	15	0
Y	In	15	0
Z	In		
S	Out	15	0
С	Out		

16bit Binary Adder

```
library IEEE;
use IEEE.std logic 1164.all;
entity Adder16bit is
port(
            : in std logic;
       Ъ
            : in std logic vector(15 downto 0);
       Y
            : in std logic vector(15 downto 0);
       Х
           : out std logic;
       С
            : out std_logic_vector(15 downto 0)
       S
  );
end Adder16bit;
architecture arch1 of Adder16bit is
```

begin

-- Your VHDL code defining the model goes here end arch1;

- Notice the difference
 - std_logic is for single bits
 - std_logic_vector is for
 buses
- How can we design the adder?
 - Use Addition from register microoperations!

...

16bit Binary Adder

library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_arith.all;

architecture arch1 of Adder16bit is

begin

S <= X + Y + Z;

end arch1;

4. Add std_logic_arith.all from IEEE library; Use addition in your code

- Add a Package from Library
- How can we design the adder?
 - Use Addition from register
 microoperations!

 For all VHDL vectors, the corresponding buses must have matching names

P1

VHDL

- E.g. X bus in Adder16bit should have bus X_0..15. Don't forget the underscore.
- There is a bug with the IO panel, I am investigating it
- Notice that C output doesn't work now. Solution?
- 5. Simulation

 For all VHDL vectors, the corresponding buses must have matching names

P1

VHDL

- E.g. X bus in Adder16bit should have bus X_0..15. Don't forget the underscore.
- There is a bug with the IO panel, I am investigating it
- Notice that C output doesn't work now.
 Solution? (Hint: use concatenation & vector)
- 5. Simulation

LAB 1 Part 2 A VHDL Exercise

P3 LAB 1

LAB 1 Part 2 A VHDL Exercise

- Task 1: Implement Adder16bit.dv save it in CSCI250.clf
 - Find a way to make C output the correct value
 - You must show Adder16bit working in circuit1.cct

WV	,
----	---

Name	Func	Left	Right
X	In	15	0
Y	In	15	0
Z	In		
S	Out	15	0
С	Out		

P3 LAB 1

LAB 1 Part 2 A VHDL Exercise

- Task 2: Implement AddSub16bit.dwv, save it in CSCI250.clf
 - This is an adder subtractor. AS is short for notAdd/Sub
 - You must show AddSub16bit working in circuit2.cct

Name	Func	Left	Right
X	In	15	0
Y	In	15	0
AS	In		
0	Out	15	0
С	Out		

