
13.09.24 17:56

CSCI 250
Introduction to Computer Organisation
Lecture 1: Beyond Integer Arithmetics I

Jetic Gū

2024 Fall Semester (S3)

Overview
• Focus: Course Introduction

• Architecture: Logical Circuits

• Core Ideas:

1. Review

2. Integer Multiplication

3. Integer Division

4. Signed Multiplication and Division

From CSCI150
• Number systems: Binary, Hexadecimal

• Unsigned

• Addition using adder

• Subtraction using subtractor

• Subtraction using adder and unsigned 2s complement

• Signed

• Signed 2s complement

Rev
iew

P0
Review

From CSCI150

• Binary Integer Addition and
Subtraction

• A combinational arithmetic block
can be designed in a hierarchical
fashion

• There’s no timing element (not a
sequential circuit)

Rev
iew

Adder-Subtractor
X

Y

Signed

nAdd/Sub

Z

Overflow

P0
Review

From CSCI150
• Building blocks

• unsigned 2s complementer

• unsigned adder

• unsigned subtractor*

• multiplexer

• XOR array

• signed 2s complementer

• etc…

Rev
iew

Adder-Subtractor
X

Y

Signed

nAdd/Sub

Z

Overflow

P0
Review

Problem!

• Adders and Subtractors, are relatively simple operations to design

• Multiplications and Divisions are not

• Might require sequential circuits

Rev
iew

P0
Review

Integer Multiplication

P1
Multiplication

Integer Multiplication

• First, let’s start with the decimal system

• Two 4 digit numbers, and , like andX3:0 Y3:0

Rev
iew

P1
Multiplication

1 2 3 4 5 6 7 8X3:0 Y3:0

Integer Multiplication
(Decimal)

Rev
iew

P1
Multiplication

1 2 3 4
5 6 7 8×

X3:0
Y3:0

1234 × 8 = 98729 8 7 2X3:0 × Y0
1234 × 7 = 86388 6 3 8 0X3:0 × Y1 × 10
1234 × 6 = 74047 4 0 4 0 0X3:0 × Y2 × 102

1234 × 5 = 61706 1 7 0 0 0 0X3:0 × Y3 × 103

7 0 0 6 6 5 2
+

Integer Multiplication
(Binary)

Dem
o

P1
Multiplication

1 0 1 0
0 1 1 0×

X3:0
Y3:0

1010 × 0 = 00000 0 0 0X3:0 × Y0
1010 × 1 = 10101 0 1 0 0X3:0 × Y1 × 2
1010 × 1 = 10101 0 1 0 0 0X3:0 × Y2 × 22

1010 × 0 = 00000 0 0 0 0 0 0X3:0 × Y3 × 23

0 1 1 1 1 0 0
+

Integer Multiplication
(Binary)

Dem
o

P1
Multiplication

1 0 1 0
0 1 1 0×

X3:0
Y3:0

1010 × 0 = 00000 0 0 0X3:0 × Y0
1010 × 1 = 10101 0 1 0 0X3:0 × Y1 × 2
1010 × 1 = 10101 0 1 0 0 0X3:0 × Y2 × 22

1010 × 0 = 00000 0 0 0 0 0 0X3:0 × Y3 × 23

0 1 1 1 1 0 0
+

Integer Multiplication

• Binary integer multiplication mathematically work the same as decimal

• Binary integer multiplication is essentially additions with shifters

• In addition, computers’ arithmetic blocks have fixed number of bits ()

n − 1

n

Conc
ep

t

P1
Multiplication

Integer Multiplication
(4bit Binary)

Dem
o

P1
Multiplication

X3:0
Y3:0

X3:0 × Y0
(X3:0 < < 1) × Y1
(X3:0 < < 2) × Y2
(X3:0 < < 3) × Y3

1 0 1 0
0 1 1 0×

0 0 0 0
1 0 1 0 0

1 0 1 0 0 0
0 0 0 0 0 0 0
0 1 1 1 1 0 0

+

4bit What you need to implement

+

+

+

That’s 3 additions for a full 4bit multiplier,
and like this, you need 31 additions for a full 32bit

multiplier

Are we gonna pack 31 adders into your CPU?
The answer: it’s complicated

X3:0 × Y0

(X2:0 < < 1) × Y1

(X3:0 < < 2) × Y2

(X3:0 < < 3) × Y3

Integer Multiplication
(n-bit Binary)

• Option 1:

• Fully parallel combinational multiplier, use multiple adders and
multiplication-by-constant components

• Has much much longer propagation delay than a single n-bit adder

• Option 2:

• Multi-step design: use storage devices, design a sequential circuit

Te
ch

nic
al

P1.2
Multiplication

1. Booth’s multiplier, Dadda multiplier, Wallace tree, etc.

What are the pros and cons of
Option 1 & 2?

Classic CPU EfficiencyP1.2
Multiplication

1. http://www.righto.com/2023/03/8086-multiplication-microcode.html
2. M68000 8-/16-/32-bit Microprocessor User's Manual

Clock cycles 1st CLK pulse 2nd+ CLK pulse

8086 Additions 2 Instruction interpretation Perform addition

8086 Subtraction 2 Instruction interpretation Perform subtraction

8086 Multiplication 48-60 Instruction interpretation Goes into loop

M68000 Multiplication
(32bit) 70 Instruction interpretation Goes into loop

Te
ch

nic
al• 8086 (16bit) and M68000 use the multi-stage approach, where it uses a single

adder and shifter to simulate the effect of having an actual Multiplier

http://www.righto.com/2023/03/8086-multiplication-microcode.html

Modern CPU EfficiencyP1.2
Multiplication

1. https://developer.arm.com/documentation/ddi0388/h/Cycle-Timings-and-Interlock-Behavior/Multiplication-instructions
2. x86-64 implementation differs between generations and versions of Intel/AMD designs, it’s much harder to find a reliable source

Clock cycles Result Latency

Addition / Subtraction for most
modern CPUs 1-2 0 cycle

ARM CPUs (as spec) 2 4 cycles

x86-64 (2016-202X) 2 1-20 cycles*

Te
ch

nic
al

• Modern CPUs often use paralleled approaches, which means the latency is caused by
conservative estimation of propagation delay

• Modern CPUs tend to use RISC instructions which require little time for instruction
interpretation, compared to CISC (e.g. x86, x86-64)

https://developer.arm.com/documentation/ddi0388/h/Cycle-Timings-and-Interlock-Behavior/Multiplication-instructions

Integer Division

P2
Division

Integer Division
(Binary)

• A simple method of binary integer multiplication works by way of 
repeated shifting and adding

• A simple method of binary integer division works by doing the exact opposite: 
repeated shifting and subtracting

Conc
ep

t

P0
XXXXXXX

P2
Division

4bit

Integer Division
(4bit Binary)

Dem
o

1 0 1 0
0 1 1 0

×

0 0 0 0
0 1 1 0 0

0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 1 1 0 0

+

0 1 1 1 1 0 0
0 1 1 0

X6:0

Y3:0

 0 0 0 0 1 1 1 1 0 0
0 1 1 1 1 0 0

0 1 1 0

Compare values by subtracting
- if Y is greater, do not subtract and output 0
- if Y is lesser, subtract, output 1 and the difference goes back to R

R7:0

Q7:0

P2
Division

 0 0 0 0 1 1 1 1 0 0

Integer Division
(4bit Binary)

Dem
o

0 1 1 1 1 0 0X6:0

Y3:0

0 1 1 1 1 0 0

0 1 1 0

Compare values by subtracting
- if Y is greater, do not subtract and output 0
- if Y is lesser, subtract, output 1 and the difference goes back to R

R9:0

Q7:0 0 0 0 1

0 0 0 1

P2
Division

4bit

1 0 1 0
0 1 1 0

×

0 0 0 0
0 1 1 0 0

0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 1 1 0 0

+

0 1 1 0

Integer Division
(4bit Binary)

Dem
o

0 1 1 1 1 0 0X6:0

Y3:0

 0 0 0 0 0 0 1 1 0 0
0 1 1 1 1 0 0

Compare values by subtracting
- if Y is greater, do not subtract and output 0
- if Y is lesser, subtract, output 1 and the difference goes back to R

R9:0

Q7:0 0 0 0 1 0 1 0

0 0 0 0
0 1 1 0

P2
Division

4bit

1 0 1 0
0 1 1 0

×

0 0 0 0
0 1 1 0 0

0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 1 1 0 0

+

0 1 1 0

Integer Division
(4bit Binary)

Dem
o

0 1 1 1 1 0 0X6:0

Y3:0

 0 0 0 0 0 0 1 1 0 0
0 1 1 1 1 0 0

Compare values by subtracting
- if Y is greater, do not subtract and output 0
- if Y is lesser, subtract, output 1 and the difference goes back to R

R9:0

Q7:0 0 0 0 1 0 1 0

0 0 0 0
0 1 1 0

What you need to implement

 if no underflow
 if no underflow
 if no underflow
 if no underflow

… …
 if no underflow

For a 7x4bit division like this, you need 7
subtractions

For full 32bit division, like this, you need 32
subtractions

Just like multiplication, the design here is a
complicated issue

R9:6 < = R9:6 − Y3:0
R8:5 < = R8:5 − Y3:0
R7:4 < = R7:4 − Y3:0
R6:3 < = R6:3 − Y3:0

R3:0 < = R3:0 − Y3:0

P2
Division

Integer Division
(n-bit Binary)

• Option 1:

• Fully parallel combinational divider, use multiple subtractors and division-
by-constant components

• Has much much longer propagation delay than a single n-bit subtractor
and multipliers of the same bits!

• Option 2:

• Multi-step design: use storage devices, design a sequential circuit

Te
ch

nic
al

P2
Division

Fun Facts

• Some Modern CPUs like PowerPC1 do not have hardware multiplication and
division for integers, they can only perform integer addition and subtractions

• Such CPUs uses Float operations to substitute integer multiplication and
division

Te
ch

nic
al

1. https://www.ibm.com/docs/en/aix/7.3?topic=mnemonics-extended-fixed-point-arithmetic-instructions

P2
Division

https://www.ibm.com/docs/en/aix/7.3?topic=mnemonics-extended-fixed-point-arithmetic-instructions

Signed Multiplication
and Division

P3
Signed

Integer
Multiplication and Division

• Recall: Decimal integer multiplication and division

• e.g. 
(-15) * (+20) = (-1) * (+1) * (15 * 20) = -300 
(-12) / (-3) = (-1) * (-1) * (12 / 3) = 4

• The signs are always processed separately from the numerical values 
+ + -> + 
+ - -> - 
- + -> - 
- - -> +

Rev
iew

P0
XXXXXXX

P3
Signed

Signed Binary Numbers
• Signed binary numbers always have a sign bit, and n-1 magnitude bits 

e.g.  
-16 in 8bit: 1 0010000 
+12 in 8bit: 0 0001100

• Signed Multiplication/Division strategies

• Separate the sign bit and magnitude bits

• Sign bit are processed following the mul/div rules

• Magnitude bits are processed using unsigned Multiplier/Divider 

Conc
ep

t

P0
XXXXXXX

P3
Signed

Signed Binary
Multiplication/Division

• Signed binary numbers always have a sign bit, and n-1 magnitude bits 
e.g.  
-16 in 8bit: 1 0010000 
+12 in 8bit: 0 0001100

Conc
ep

t

P0
XXXXXXX

P3
Signed

Sign bit of X Sign bit of Y Sign of X Sign of Y Sign of  
X/Y or XY

Sign bit of 
X/Y or XY

0 0 + + + 0

0 1 + - - 1

1 0 - + - 1

1 1 - - + 0

Think XOR

Signed Binary Numbers
• Signed binary numbers always have a sign bit, and n-1 magnitude bits 

e.g.  
-16 in 8bit: 1 0010000 
+12 in 8bit: 0 0001100

• Signed Multiplication/Division strategies

• Separate the sign bit and magnitude bits

• Sign bit are processed using an XOR gate

• Magnitude bits are processed using unsigned Multiplier/Divider 

Conc
ep

t

P0
XXXXXXX

P3
Signed

