Jetic Gū

1. Handwritten submissions and proprietary formats (e.g. Pages or MS Word) will not be graded.
2. Resubmissions are subject to $\mathbf{2 0 \%}$ penalty per day pass the date of grade release.
3. Mathematical expressions must be written entirely using LaTeX, otherwise $\mathbf{5 0 \% - 1 0 0 \%}$ of marks will be deducted.
4. Circuits must be tested using switches/probs against a truth table. Untested circuits will receive 0 .

Submission File structure:

```
submission.zip
    - answer.pdf
    - c5.cct
    - c6.cct
```

The circuit files are 2.5pt each, the PDF is worth 10pt.

Lab 1

1. Work on the following boolean equations (2pt).
A. Use a truth table to prove: $\overline{X+Y+Z}=\bar{X} \bar{Y} \bar{Z}$
B. Use DeMorgan's Theorem, express the following with only OR and complement (NOT): $\bar{B} C+\bar{A} \bar{C}$
2. Use algebraic manipulation to prove (4pt).
A. $\bar{X} \bar{Y}+\bar{X} Y+X Y=\bar{X}+Y$
B. $Y+\bar{X} Z+X \bar{Y}=X+Y+Z$
C. $W Y+\bar{W} Y \bar{Z}+W X Z+\bar{W} X \bar{Y}=W Y+\bar{W} X \bar{Z}+\bar{X} Y \bar{Z}+X \bar{Y} Z$
D. $A \bar{D}+\bar{A} B+\bar{C} D+\bar{B} C=(\bar{A}+\bar{B}+\bar{C}+\bar{D})(A+B+C+D)$
3. Optimise the following boolean functions using K-maps (2pt).
A. $F(A, B, C, D)=\Sigma m(0,2,4,5,8,10,11,15)$
B. $F\left(A_{3}, A_{2}, A_{1}, A_{0}\right)=\Sigma m(0,1,2,4,5,6,10,11)$
4. The denotation of don't care condition is $d(\ldots)=\Sigma m(\ldots)$ complimenting the boolean function F. Optimise the following Boolean function F together with the don't care condition $d(2 \mathrm{pt})$.
A. $F(A, B, C)=\Sigma m(2,4,7), d(A, B, C)=\Sigma m(0,1,5,6)$
B. $F\left(A_{3}, A_{2}, A_{1}, A_{0}\right)=\Sigma m(4,6,7,8,12,15), d\left(A_{3}, A_{2}, A_{1}, A_{0}\right)=\Sigma m(2,3,5,10,11,14)$
5. Implement the following boolean expression in LogicWorks, save it as c5.cct (2.5pt).

$$
F(A, B, C)=A B+A \bar{C}+B \bar{C}
$$

6. Implement the following boolean expressions as a single circuit in LogicWorks, save it as c6.cct (2.5pt).

$$
\begin{aligned}
& S(X, Y, Z)=X \oplus Y \oplus Z \\
& C(X, Y, Z)=X Y+(X \oplus Y) Z
\end{aligned}
$$

