
12.11.21 17:22CSCI 120
Introduction to CompSci and

Programming I
Lecture 7: Algorithms I

Jetic Gū

Overview

• Focus: Python Programming

• Architecture: von Neumann

• Core Ideas:

1. Introduction to Algorithms

2. Time Complexity, Big-O Notation

Introduction to
Algorithm Analysis

Sum
mary

P1
Intro. Algorithm

The Tower of Hanoi

• A mathematical game of 3 rods and disks of various sizes

• Rule 1: you can only move one disk on top of a rod at any time

• Rule 2: you can not put a bigger disk on top of a smaller disk

• Objective: move all disks from rod 1 to rod 3

n

Conc
ep

t

P1
Intro. Algorithm

5

4

3

2

1

How can we design an algorithm
to do that?

Time Complexity and
Big-O

Sum
mary

P1
Complexity

Time Complexity
• Method of algorithm analysis: how efficient is an algorithm?

• Time complexity: estimation of amount of time it takes to finish up an
execution

• Why?

• Different algorithms might lead to different complexity, and usually we want
the most efficient algorithm

• Time complexity analysis allows us to compare different algorithms
scientifically

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Search Algorithm (1)

• An array contains unique elements. Design an algorithm to search for the
second largest number in an array.

• How can you solve it?

n

Exa
mple

P0
XXXXXXX

P1
Complexity

10 99 32 7 12 1 56 33 64 78 9 5 3 27

• Solution 1:

• Search for the largest number by going through the entire array.

• Knowing the largest number, search again for the second largest.

Exa
mple

P0
XXXXXXX

P1
Complexity

10 99 32 7 12 1 56 33 64 78 9 5 3 27

Search Algorithm (1)

 # searching for the largest

 lar = -1

 for item in arr:

 if item > lar:

 lar = item

 # lar is now the largest num

Exa
mple

P0
XXXXXXX

P1
Complexity

10 99 32 7 12 1 56 33 64 78 9 5 3 27

 # searching for the 2nd

 lar2 = -1

 for item in arr:

 if item > lar2:

 if item < lar:

 lar2 = item

 return lar2

• How many steps does it take to execute this algorithm?

Search Algorithm (1)

 # this is how max(arr) works

 # searching for the largest

 lar = -1

 for item in arr:

 if item > lar:

 lar = item

 # lar is now the largest num

Exa
mple

P0
XXXXXXX

P1
Complexity

 # searching for the 2nd

 lar2 = -1

 for item in arr:

 if item > lar2:

 if item < lar:

 lar2 = item

 return lar2

• Assuming each comparison in the first
for loop takes steps

• the first for loop in total takes
steps

• Assuming each comparison in the
second for loop takes steps

• the second for loop in total takes
steps

• and are constants

a

an

b

bn

a b

1 step

 stepsan

1 step

 stepsbn

Search Algorithm (1)

 # searching for the largest

 lar = -1

 for item in arr:

 if item > lar:

 lar = item

 # lar is now the largest num

Exa
mple

P0
XXXXXXX

P1
Complexity

 # searching for the 2nd

 lar2 = -1

 for item in arr:

 if item > lar2:

 if item < lar:

 lar2 = item

 return lar2

• In total:

•

• In reality you will never be certain
what these constants are, since
different programming languages
are different

• We call algorithms that take
 time to be linear, and we

say it’s time complexity

1 + an + 1 + bn = (a + b)n + 2

c1n + c0
O(n)

1 step

 stepsan

1 step

 stepsbn

Search Algorithm (1)

Search Algorithm (2)

• An array contains unique elements. Design an algorithm to search for the
second largest number in an array.

• Consider this same problem, do we have other solutions? Can we look for the
largest and 2nd largest at the same time?

n

Exa
mple

P0
XXXXXXX

P1
Complexity

10 99 32 7 12 1 56 33 64 78 9 5 3 27

Search Algorithm (2)

Exa
mple

P0
XXXXXXX

P1
Complexity

10 99 32 7 12 1 56 33 64 78 9 5 3 27

 lar = -1 # largest

 lar2 = -1 # second largest

 for item in arr:

 if item > lar:

 lar2 = lar

 lar = item

 else if item > lar2:

 lar2 = item

• How many steps does it take to execute this algorithm?

every time a larger number is found,
lar takes it, and lar2 becomes the second largest

Search Algorithm (2)

Exa
mple

P0
XXXXXXX

P1
Complexity

10 99 32 7 12 1 56 33 64 78 9 5 3 27

 lar = -1 # largest

 lar2 = -1 # second largest

 for item in arr:

 if item > lar:

 lar2 = lar

 lar = item

2 step

 stepscn

• In total:

•

• This is also linear, also

• is it faster or slower?

cn + 2

O(n)

Time Complexity Analysis
• There’s a few principles in time complexity analysis of algorithms

• we don’t care about constants

• we only care about the element with highest power 

• Why? Because an element with higher power will always out grow those with
lower power. i.e.

• This is called Big-O Notation. 
mathematical notation that describes the limiting behaviour of a function when the
argument tends towards a particular value or infinity.

ax + b = O(n)

ax2 + bx + c = O(n2)

O(2n) > O(n50) > O(n2) > O(n log n) > O(n) > O(log n)

Exa
mple

P0
XXXXXXX

P1
Complexity

Constants are implementation details, not
algorithm themselves

Time Complexity Analysis

Cha
rt

P0
XXXXXXX

P1
Complexity

What is the complexity?

• What is this programme doing?

• What is its complexity?

Exa
mple

P1
Complexity

 a = []

 for i in range(n):

 a.append([])

 for j in range(n):

 a[i].append(int(input()))

What is the complexity?

• What is this programme doing?

• What is its complexity?

Exa
mple

P1
Complexity

 # a and b are matrices of

 c = []

 for i in range(n):

 c.append([])

 for j in range(n):

 c[i].append(0)

 for k in range(n):

 c[i][j] += a[i][k] * b[k][j]

n × n

