12.11.21 17:22

CSCI 120
Introduction to CompSci and

Programming |

: Algorithms |

Lecture 7

LeEs
A S
TRy

I:4

R

(L
5
LEA

Wm%, \
- B
F B

- ~ad
rry

KB

_FV » Be > 2
h.mm..\& vam@_ Frey ne

JPM.
5 Y
5 Y

..“YH.V -.“».“_t \
- r .- r
AN , &

- PoA | BSA

LR ITORIND

- [N

el

e
L
E

A8)]

Jetic GU

Overview

e Focus: Python Programming
e Architecture: von Neumann
e Core ldeas:

1. Introduction to Algorithms

2. Time Complexity, Big-O Notation

Introduction to
Algorithm Analysis

The Tower of Hanol

A mathematical game of 3 rods and »n disks of various sizes How can we design an algorithm
to do that?

 Rule 1: you can only move one disk on top of a rod at any time
 Rule 2: you can not put a bigger disk on top of a smaller disk

e Objective: move all disks from rod 1 to rod 3

Time Complexity and
Big-O

Time Complexity

e Method of algorithm analysis: how efficient is an algorithm?

e Time complexity: estimation of amount of time it takes to finish up an
execution

e Why?

e Different algorithms might lead to different complexity, and usually we want
the most efficient algorithm

e Time complexity analysis allows us to compare different algorithms
scientifically

Search Algorithm (1)

10 99 32 / 12 1 56 33 64 /8 9 5 3 27

e An array contains n unigue elements. Design an algorithm to search for the
second largest number in an array.

e How can you solve it?

Search Algorithm (1)

10 99 32 / 12 1 56 33 64 /8 9 5 3 27

e Solution 1:
e Search for the largest number by going through the entire array.

e Knowing the largest number, search again for the second largest.

Search Algorithm (1)

10 99 32 / 12 1 56 33 64 /8 9 5 3 27

searching for the 2nd
lar2 = -1
for 1tem 1n arr:
1f 1tem > lar?2:
1f 1tem < lar:

searching for the largest
lar = -1
for i1tem 1n arr:
1f 1tem > lar:
lar = 1tem

| lar?2 = 1tem
lar i1s now the largest num

this is how max(arr) works return larz

e How many steps does it take to execute this algorithm?

Search Algorithm (1)

searching for the largest e Assuming each comparison in the first
lar = -1 1 step for loop takes a steps
for 1tem 1n arr:

1f 1tem > lar: o the first for loop in total takes an

lar = item steps

lar 1s now the largest num
searching for the 2nd e Assuming each comparison in the
lar2 = -1 1 step second for loop takes b steps

for 1tem 1n arr:
if item > lar2: e the second for loop in total takes bn

if item < lar: steps

= 1tem bn steps
return lar? e a and b are constants

Search Algorithm (1)

searching for the largest

e |n total:
lar = -1 1 step

for 1tem 1n arr:
e l+an+1+bn=@+bn+2

1f 1tem > lar:
lar = i1tem

e |n reality you will never be certain
what these constants are, since
different programming languages
are different

lar 1s now the largest num
t secarching for the 2nd

lar?2 = -1 1 step
for i1tem 1n arr:
1f 1tem > lar’?:

1f 1tem < lar:

e We call algorithms that take
cin + ¢y time to be linear, and we

= 1tem bn steps

BE— say it’s time complexity O(n)

Search Algorithm (2)

10 99 32 / 12 1 56 33 64 /8 9 5 3 27

e An array contains n unigue elements. Design an algorithm to search for the
second largest number in an array.

e (Consider this same problem, do we have other solutions? Can we look for the
largest and 2nd largest at the same time?

Search Algorithm (2)

10 99 32 V4 12 1 56 33 64 /8 9 5 3 2/
lar = -1 # largest
lar?2 = -1 # second largest

for 1tem 1n arr:

every time a larger number is found,

] ' > . :
1T 1tem lar lar takes it, and 1ar2 becomes the second largest

lar”? = lar

lar = i1tem
else 1f i1tem > lar’:
lar? = i1tem

e How many steps does it take to execute this algorithm?

Search Algorithm (2)

10 99 32 / 12 1 56 33 64 /8 9 5 3 27

e |n total:
for 1tem 1n arr:
if item > lar: e cn+2
lar?2 = lar
lar = item e This is also linear, also O(n)

e |s |t faster or slower?

Time Complexity Analysis

 There’s a few principles in time complexity analysis of algorithms

e we don’t care about constants ax + b = O(n)

Constants are implementation details, not

 we only care about the element with highest power algorithm themselves
ax’ + bx + ¢ = O(n?)

e Why? Because an element with higher power will always out grow those with
lower power. i.e. 0(2") > O(rn>?) > O(n?) > O(nlogn) > O(n) > O(log n)

 This is called Big-O Notation.
mathematical notation that describes the limiting behaviour of a function when the
argument tends towards a particular value or infinity.

Time Complexity Analysis

Big-O Complexity Chart

Bad || Fair || Good

Operations

Elements

What is the complexity?

a = []
for 1 1n range(n):
a.append ([])
for 7 1n range(n) :
alil] .append(int (1nput ()))

e What is this programme doing?

e What is its complexity?

What is the complexity?

a and b are matrices of nXn
c = []
for 1 1n range(n) :
c.append ([])
for 7 1n range(n) :
cl[1] .append(0)
for k 1n range(n):
c[i1[9] += alillk] * blk][]j]

e What is this programme doing?

e What is its complexity?

