
28.09.21 21:45CSCI 120

Introduction to Computer Science and

Programming I

Lecture 3: Functions I

Jetic Gū

Overview

• Focus: Basic Python Syntax

• Core Ideas:

1. Function Declarations

2. Python Scopes

Python Functions

P1

Functions

Subroutine that you can call, anytime!

Existing Functions

• input(...)

• Parameters (optional): prompt, a str to be printed before taking in input

• Return: str, a single line of string from stdin

• Return value: the result/output of the function, that can be used as part of
an expression, or assigned to a variable 
e.g. x = input()

Rev
iew

P0

XXXXXXX

P1

Functions

Existing Functions

• print(...)

• Parameters: objects, separated by ','

• optional parameters: sep, end, ...

Rev
iew

P0

XXXXXXX

P1

Functions

None value

• None value

• Check if a variable’s value is None 
if x is None: 
 # do stuff...

• Why do we need None?

• For functions with no return value, such as print(...)

Conc
ep

t

P0

XXXXXXX

P1

Functions

Python Function

• Functions are subroutines that can be reused

• Functions can be declared anywhere

• Functions can have parameters

• Functions can have return values

Conc
ep

t

P0

XXXXXXX

P1

Functions

Functions Declarations

• Functions are declared using def

• followed by function name (e.g. welcome) 
 Function names should be lowercases, sometimes with underscores

• parenthesis for parameters (in this case no parameter)

• and colon, then a subroutine

• Functions can be called anywhere after it’s declared

STYLE

Te
ch

nic
al

P0

XXXXXXX

P1

Functions

 def welcome():

 print("Welcome to my programme")

 welcome()

Subroutine

Functions Declarations

• Functions can have parameters (also called arguments)

• Parameters are like new variables, you give these variables values when you
call the function

• Parameter variables only exist in the scope of the function’s subroutine

• You can have 0, 1 or any number of parameters

Te
ch

nic
al

P0

XXXXXXX

P1

Functions

 def welcome(firstname, lastname):

 print(firstname, lastname, ", I welcome you")

 welcome("Jetic", "Gu") 
firstname gets "Jetic", lastname gets "Gu"

Functions Declarations

• Always leave 2 empty line between function declarations, and your main programme

• Always declare functions at the beginning of your *.py script files (before main programme)

Te
ch

nic
al

P0

XXXXXXX

P1

Functions

 def sayHi(name):

 print("Hello,", name)

 def sayBye(name):

 print("Bye,", name)

 sayHi("Jetic")

 sayHi("Jeremy")

 sayBye("Jetic")

Function Declaration

Function Declaration

Main Programme

STYLE

STYLE

Return a value

• To return a value, or terminate the subroutine prematurely, use return

• When the programme reaches the function call, it will execute the subroutine,
then get the value

Te
ch

nic
al

P0

XXXXXXX

P1

Functions

 def sum_to(n):

 sum = 0

 for i in range(n + 1):

 sum += i

 return sum

 print("The sum of 1 to 100 is", sum_to(100))

 print("The sum of 1 to 1000 is", sum_to(1000))

Return a value

• To return a value, or terminate the subroutine prematurely, use return

• When you just write return, it will exit the subroutine and return None

• When your function exits without return, it will return None

Te
ch

nic
al

P0

XXXXXXX

P1

Functions

 def sum_to(n):

 if n < 0:

 return

 sum = 0

 for i in range(n + 1):

 sum += i

 return sum

Python Scopes

P2

Python Scopes

When and where can you access variables/functions

Python Scopes

• Where can you access variable
name?

• Is name in add_stu and del_stu
the same variables?

• Where can you access variable
stu_num?

Te
ch

nic
al

P2

Python Scopes

 stu_num = 0

 def add_stu(name):

 print("Welcome", name)

 stu_num += 1

 def del_stu(name):

 print("Bye", name)

 stu_num -= 1

 add_stu("Jetic")

 add_stu("Jack")

 del_stu("Jetic")

 print(stu_num)

Python Scopes

Conc
ep

t

P2

Python Scopes

 stu_num = 0

 def add_stu(name):

 print("Welcome", name)

 stu_num += 1

 def del_stu(name):

 print("Bye", name)

 stu_num -= 1

 add_stu("Jetic")

 add_stu("Jack")

 del_stu("Jetic")

 print(stu_num)

• Variables (and functions) can only
be accessed in their respective
scopes, or their children scopes

• In this example, you have 3 scopes

• global scope (your script main.py)

• local scope del_stu

• local scope add_stu

Global Scope

Local Scope

Local Scope

Python Scopes

Conc
ep

t

P2

Python Scopes

 stu_num = 0

 def add_stu(name):

 print("Welcome", name)

 stu_num += 1

 def del_stu(name):

 print("Bye", name)

 stu_num -= 1

 add_stu("Jetic")

 add_stu("Jack")

 del_stu("Jetic")

 print(stu_num)

• A scope is created NOT when you
write the code, but when you
execute it

• During the execution of this
scope, new variables created are
of the scope

• When a scope is deleted, all
internal variables are lost

Global Scope

Local Scope

Local Scope

Python Scopes

Te
ch

nic
al

P2

Python Scopes

 stu_num = 0

 def add_stu(name):

 print("Welcome", name)

 stu_num += 1

 def del_stu(name):

 print("Bye", name)

 stu_num -= 1

 add_stu("Jetic")

 add_stu("Jack")

 del_stu("Jetic")

 print(stu_num)

Global Scope

Local Scope

Local Scope

Different!

• You run python main.py  
The Global Scope is created

• You run add_stu  
Local scope add_stu is created

• add_stu finishes and returns 
Local scope add_stu is deleted

• You run add_stu  
Local scope add_stu is created

• add_stu finishes and returns 
Local scope add_stu is deleted

Python Scopes

• Python scope is different from other programming languages

• A new subroutine doesn’t create a new scope (unlike C, C++, etc.)

• Functions declarations also have scopes

• And yes, you can declare new functions inside a function, but that would limit the
said function in a local scope

Conc
ep

t

P2

Python Scopes

 def func1():

 def func2():

 ...

 # do stuff...

 func1()

Global Scope
Local Scope

Even more Local Scope

Python Scopes

Te
ch

nic
al

P2

Python Scopes

 def func1():

 def func2():

 ...

 # do stuff...

 func1()

Global Scope
Local Scope

Even more Local Scope

• Calling func1 inside func1 is called a recursive function call

• You can call func1 inside: main programme, func1, and func2

• You can call func2 inside: func1, and func2

• You can NOT call func2 outside of func1

Python Scopes

Te
ch

nic
al

P2

Python Scopes

 def func1():

 def func2():

 ...

 # do stuff...

 func1()

Global Scope
Local Scope

Even more Local Scope

• Variable declared in the main script can be accessed by: 
main programme, func1, and func2

• Variables declared in func1 can be accessed by: func1, and func2

• Variables declared in func2 can only be accessed by: func2

