
28.09.21 21:45CSCI 120 
Introduction to Computer Science and 

Programming I 
Lecture 3: Functions I

Jetic Gū



Overview

• Focus: Basic Python Syntax


• Core Ideas:


1. Function Declarations


2. Python Scopes



Python Functions

P1 
Functions

Subroutine that you can call, anytime!



Existing Functions

• input(...) 

• Parameters (optional): prompt, a str to be printed before taking in input


• Return: str, a single line of string from stdin


• Return value: the result/output of the function, that can be used as part of 
an expression, or assigned to a variable 
e.g. x = input()

Rev
iew

P0 
XXXXXXX

P1 
Functions



Existing Functions

• print(...) 

• Parameters: objects, separated by ','


• optional parameters: sep, end, ...

Rev
iew

P0 
XXXXXXX

P1 
Functions



None value

• None value


• Check if a variable’s value is None 
if x is None: 
    # do stuff... 

• Why do we need None?


• For functions with no return value, such as print(...)

Conc
ep

t

P0 
XXXXXXX

P1 
Functions



Python Function

• Functions are subroutines that can be reused


• Functions can be declared anywhere


• Functions can have parameters


• Functions can have return values

Conc
ep

t

P0 
XXXXXXX

P1 
Functions



Functions Declarations

• Functions are declared using def 

• followed by function name (e.g. welcome) 
 Function names should be lowercases, sometimes with underscores


• parenthesis for parameters (in this case no parameter)


• and colon, then a subroutine


• Functions can be called anywhere after it’s declared

STYLE

Te
ch

nic
al

P0 
XXXXXXX

P1 
Functions

 def welcome(): 
     print("Welcome to my programme") 

 welcome()

Subroutine



Functions Declarations

• Functions can have parameters (also called arguments) 

• Parameters are like new variables, you give these variables values when you 
call the function


• Parameter variables only exist in the scope of the function’s subroutine


• You can have 0, 1 or any number of parameters

Te
ch

nic
al

P0 
XXXXXXX

P1 
Functions

 def welcome(firstname, lastname): 
     print(firstname, lastname, ", I welcome you") 

 welcome("Jetic", "Gu") 
# firstname gets "Jetic", lastname gets "Gu"



Functions Declarations

• Always leave 2 empty line between function declarations, and your main programme


• Always declare functions at the beginning of your *.py script files (before main programme)

Te
ch

nic
al

P0 
XXXXXXX

P1 
Functions

 def sayHi(name): 
     print("Hello,", name) 

 def sayBye(name): 
     print("Bye,", name) 

 sayHi("Jetic") 
 sayHi("Jeremy") 
 sayBye("Jetic")

Function Declaration

Function Declaration

Main Programme

STYLE

STYLE



Return a value

• To return a value, or terminate the subroutine prematurely, use return 

• When the programme reaches the function call, it will execute the subroutine, 
then get the value

Te
ch

nic
al

P0 
XXXXXXX

P1 
Functions

 def sum_to(n): 
     sum = 0 
     for i in range(n + 1): 
         sum += i 
     return sum 

 print("The sum of 1 to 100 is", sum_to(100)) 
 print("The sum of 1 to 1000 is", sum_to(1000))



Return a value

• To return a value, or terminate the subroutine prematurely, use return 

• When you just write return, it will exit the subroutine and return None


• When your function exits without return, it will return None

Te
ch

nic
al

P0 
XXXXXXX

P1 
Functions

 def sum_to(n): 
     if n < 0: 
         return 
     sum = 0 
     for i in range(n + 1): 
         sum += i 
     return sum



Python Scopes

P2 
Python Scopes

When and where can you access variables/functions



Python Scopes

• Where can you access variable 
name?


• Is name in add_stu and del_stu 
the same variables?


• Where can you access variable 
stu_num?

Te
ch

nic
al

P2 
Python Scopes

 stu_num = 0 

 def add_stu(name): 
     print("Welcome", name) 
     stu_num += 1 

 def del_stu(name): 
     print("Bye", name) 
     stu_num -= 1 
   
 add_stu("Jetic") 
 add_stu("Jack") 
 del_stu("Jetic") 
 print(stu_num) 



Python Scopes

Conc
ep

t

P2 
Python Scopes

 stu_num = 0 

 def add_stu(name): 
     print("Welcome", name) 
     stu_num += 1 

 def del_stu(name): 
     print("Bye", name) 
     stu_num -= 1 
   
 add_stu("Jetic") 
 add_stu("Jack") 
 del_stu("Jetic") 
 print(stu_num) 

• Variables (and functions) can only 
be accessed in their respective 
scopes, or their children scopes


• In this example, you have 3 scopes


• global scope (your script main.py)


• local scope del_stu


• local scope add_stu

Global Scope

Local Scope

Local Scope



Python Scopes

Conc
ep

t

P2 
Python Scopes

 stu_num = 0 

 def add_stu(name): 
     print("Welcome", name) 
     stu_num += 1 

 def del_stu(name): 
     print("Bye", name) 
     stu_num -= 1 
   
 add_stu("Jetic") 
 add_stu("Jack") 
 del_stu("Jetic") 
 print(stu_num) 

• A scope is created NOT when you 
write the code, but when you 
execute it


• During the execution of this 
scope, new variables created are 
of the scope


• When a scope is deleted, all 
internal variables are lost

Global Scope

Local Scope

Local Scope



Python Scopes

Te
ch

nic
al

P2 
Python Scopes

 stu_num = 0 

 def add_stu(name): 
     print("Welcome", name) 
     stu_num += 1 

 def del_stu(name): 
     print("Bye", name) 
     stu_num -= 1 
   
 add_stu("Jetic") 
 add_stu("Jack") 
 del_stu("Jetic") 
 print(stu_num) 

Global Scope

Local Scope

Local Scope

Different!

• You run python main.py  
The Global Scope is created


• You run add_stu  
Local scope add_stu is created


• add_stu finishes and returns 
Local scope add_stu is deleted


• You run add_stu  
Local scope add_stu is created


• add_stu finishes and returns 
Local scope add_stu is deleted



Python Scopes

• Python scope is different from other programming languages


• A new subroutine doesn’t create a new scope (unlike C, C++, etc.)


• Functions declarations also have scopes


• And yes, you can declare new functions inside a function, but that would limit the 
said function in a local scope

Conc
ep

t

P2 
Python Scopes

 def func1(): 
    def func2(): 
       ... 
     
    # do stuff... 

 func1()

Global Scope
Local Scope

Even more Local Scope



Python Scopes

Te
ch

nic
al

P2 
Python Scopes

 def func1(): 
    def func2(): 
       ... 
     
    # do stuff... 

 func1()

Global Scope
Local Scope

Even more Local Scope

• Calling func1 inside func1 is called a recursive function call


• You can call func1 inside: main programme, func1, and func2


• You can call func2 inside: func1, and func2


• You can NOT call func2 outside of func1



Python Scopes

Te
ch

nic
al

P2 
Python Scopes

 def func1(): 
    def func2(): 
       ... 
     
    # do stuff... 

 func1()

Global Scope
Local Scope

Even more Local Scope

• Variable declared in the main script can be accessed by: 
main programme, func1, and func2


• Variables declared in func1 can be accessed by: func1, and func2 

• Variables declared in func2 can only be accessed by: func2


