21.09.21 15:52

CSCI 120
Introduction to Computer Science and
Programming |
Lecture 2: Loops |

S8
L] 1 -
e

s o

CEER
LB
b,
5

;
L
D
-y

M85
9
4

"5 b

o

L a "‘ ll

A b I
e '
a2

(EED
,’i.;ij
Ly |

=

L
o5
”

4.8
e

r
a9

:

=4 IR

|

-
e
\J

o

-

Overview

e Focus: Basic Python Syntax
e Core |ldeas:

1. for loops, iterators

2. Tips

P1
for loops

for loops

Doing things, over and over again

Why loops

e |magine
e Having to print the same message to stdout 1000 times

e Having to go through an entire array (or string) to process each element (or
character)

o Keep processing input as they arrive (endless repeat)

|_ooping through a string

varlal:]ﬁe = "Cheese” iterator
for in [word]

letter)

Subroutine

print ("This 1s a letter:

e Forloop

e 3 parts: a new variable, the iterator, and the subroutine

e |nthis case variable letter is going to take on values "C", "h", "e",

Sh ', and for every value, the subroutine will be executed

P1

Python

for loops

for VARIABLE i1in ITERATOR:
SUBROUTINE. ..

Ilterator

>>> 1ter([1,2,3,4,5])

<list_1terator object at Ox7f8b8002f4a8>
>>> 1ter("'This 1s a string")
<str_iterator object at O0x7f8b8002f4e0>

>>> 1ter(12345)
Traceback (most recent call last):

File "<stdin>", line 1, 1n <module>
TypeError: 'i1nt' object 1s not 1terable

* Python data types can be divided into iterable ones, and non-iterable ones

e |terable data types: can be converted into iterators using iter () function

e listsieqg. [1, 2, 3, 4, 5]

e str.:e.g. "This 1s a string"

Iterating through a list of
numbers

sum = 0
for 1 in [1,2,3,4,5]:
sum = sum 1

print ("The sum from 1 to 5 1s:", sum)

e |terating through a list of values to calculate the sum

e What if it is up to 100? or 10007?

The range () function

sum = 0
for 1 1n range(101) :
sum = sum + 1

print ("The sum from 0 to 100 1s:", sum)

® range (101)
Generates an iterator, with values from 0, 1, ..., 100
® range (var) # var must be integer

Generates an iterator, with values from O, 1, ..., var-1

e Can be converted to a list using 1ist ()
list (range (10)) willgiveyou [0, 1, 2, 3, 4, 5, o, 7, 8, 9]

e The range () function

e Options for the range () function

® range (var) # var must be integer
Generates an iterator, with values from 0, 1, ..., var-1
® range (i, j) # 1 and j must be integer

Generates an iterator, with values from 1, i+1, ..., J-1
® list (range(-2,2)) wilgiveyou [-2, -1, 0, 1]

® range (i, j, inc) # 1 and j and inc must be integer
Generates an iterator, with values from i, i+inc, i+2 * inc..., 7-1

® list (range(1,9,3)) willgiveyou [1, 4, 7]

® list (range(6,1,-1)) willgiveyou [6, 5, 4, 3, 2]

Some tips for for

New stuff included.

Tip 0: Multiple test cases

n = 1nt (input())
for 1 1n range(n):
do stuff...

e |n algorithm contests as well as on OJ, it is not uncommon for you to
encounter multiple test cases

e YOU can use for to solve them

Tip 1: Layered for loops

n = 1nt (input())
for 1 1n range(n):
for 7 1n range(n) :
prj—nt("("r j—l "I"I jl ")"I end="\t", Sep:"")
print ("")

e for statements inside another layer of loop

e The code above will print a nice matrix of n X n size, each position contains
Its coordinate

Tip 2: Break Prematurely

target = int (input())
for 1 1n range (1000) :
print (1)
1f 1 == target:
break
print ("for loop terminated")

e break statement

e \When certain condition is met, you might want to end a for loop prematurely

e break will terminate the most immediate layer of loop

Tip 3: Looping the indices

ada = :1/2/3/415]
b = [06,7,8,9,10]
dot = 0

for 1 1n range(len(a)):
dot ali] * bli]

e |nstead of iterating through an entire list/string, you may also generate an
iterator of indices, so you can access elements by their indices

e |n this example, you are calculating the dot product for two vectors a and b

