CSCI 120
Introduction to CompSci and
Programming |
Lec 6: Class Il & Tree |

(=1 = ] = R = Y= I = = N = B =
glaolpbio o oo o

L I T = I T T R S Y I TR SRS
,
doao
oroaroaa HY o r oo

0 O

1:1-'1;11.",-.

(=1 = S = - S - - B = - T

0
0
7]
o
1]
0
o
1]
0
0
1]
0
o
1]
o
o
o
1]

Jetic GU



Overview

e Focus: Python Programming
o Architecture: von Neumann
e Core ldeas:

1. Binary Tree using Class



Python Class

e Custom data structures
e (Class have methods and attributes, shared between its objects

e Native classes: e.g. 1ist, dict, str



Binary lree




A Family Tree Problem

e | et’s say you want to store information regarding some relatives

- IGrandma @ 2 Grandma Grandpa
. . . Wong I Johnson % i

Mama
Johnson

. Timmothy
Gu

o
4




class Family:
def 1nit (self) :

self.name = "NoName"

self.mama None

self.papa None

% v
A
&

Gu

‘Grandma

Wong

A Family Tree Problem

Grandpa

s

- Grandma

Johnson

. Timmothy
Gu

Grandpa
Johnson % e



A Family Tree Problem

Grandpa

class Family:

def

. 1nit

self,

name="NoName"

mama=None,

papa=None) :
self.name = name
self.mama = mama

self.papa = papa

i »~
N
7

Gu

‘Grandma

Wong

s

- Grandma

Johnson

. Timmothy
Gu

Grandpa
Johnson N ¢

f
i
]
}
" p 35
£



A Family Tree Problem

Grandpa
Gu .

Grandpa
Johnson O ¢

class Family: ) —
. Grandma ~ Grandma
def  1nit (...): L= y7 Wong S

def i1intro(self):

-
print ("my name is...") Papa
. | /2 Gu Johnson
print ("my parents "
are...")
e Can we print the family tree in a ; . Timmothy
better way? S

4



Definition

e A Binary Tree (BT) is a tree in which each node contains at most two child
nodes(left child and right child).

e Binary Trees are the simplest trees in Graph Theories, and has a lot of applications

Root A




Definition

e A tree has a root node, this is where
you access information on the tree




Definition

* |n a binary tree, each node can have
two "children": left and right

Root
e Node A: Left B, Right C

A is B and C’s parent

e Node B: Left D, Right E
B is D and E’s parent

Right Left Right

= F G
e Node C: Left F, Right G
Cis F and G’s parent

* Any node except for the root can only
have 1 parent




Definition

* |n a binary tree, each node can have :
two "children": left and right |

e Node A: Left B, Right C
A is B and C’s parent

e Node B: Left D, Right E
B is D and E’s parent

e Node C: Left F, Right G
Cis F and G’s parent

* Any node except for the root can only
have 1 parent




Definition

e There are also two types of nodes
e [ eaf node: a node without children

e Internal node: a node with children

e Complete Binary Tree

e All iInternal nodes have 2 children




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left, then Right

Root




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:

A




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:

A —B




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:

A—B —D




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:

A—B —D —E




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:

A—B —D —E —C




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:

A—B —D —E —C —F




Tree Traversal

* There’s a few types of binary tree traversals, first let’'s do Preorder Traversal

e First visit the Root, then Left (subtree), then Right (subtree)

Visiting Order:

A—B —D —E —C —F —G




A Family Tree Problem

o | | ] . Timmothy
e Visit all family members in preorder . Gu

¢ class Family:
def init  (...):

def traverse(self) :

-
Mama
\ /2 Johnson

print (self.name)
1f self.papa 1s not None:

self-papa.traverse Grandpa
if self.mama is not None: B - Johnson [ © 7

self.mama.traverse () N - @
|Grandma ~ Grandma ¥

= Y Wong % & Dent

(Y
7 N




P1
Tree

* What is the output?

e Can you make it prettier?

Grandpa

Gu

S

£

A Family Tree Problem

- Timmothy
Gu

Mama
Johnson

Grandpa
Johnson by

| R Grandma fb

Grandma

#5° >
2
y

Wong




