
24.03.21 07:59CSCI 120

Introduction to CompSci and

Programming I

Lec 6: Class

Jetic Gū

Announcement!

Atte
nti

on

• Assignment 3 cancelled

• I don’t think it is really necessary

• Test on Friday, for 2 hours

• I will post instructions through email and be here for
technical assistance

• Written part: MCQ and Short QA, through my online system

• Code part: Online Judge

Overview

• Focus: Python Programming

• Architecture: von Neumann

• Core Ideas:

1. Python Class

2. Lab

Class

Sum
mary

P1

Class

Algorithms
• The key to algorithms: data structure

• Complex data structures require carefully designed coding modules to realise

• Python native: list

• Python native: dict

• Data can by highly complex as well

• Multiple columns, and multiple methods for you to work on these data

Rev
iew

P0

XXXXXXX

P1

OOP

Example: Employee info
• A company needs to manage its staff info

• Each staff has at least the following info

• Name/ Sex/ Age

• Supervisor

• Each of these entry will have different types

• How can we manage this data effectively?

Dem
o

P0

XXXXXXX

P1

OOP

Name: string
Gender: M/F/O

Age: int
Supervisor: person

Class
• In python, you can declare custom classes with attributes and methods, to

more effectively manage your data

• Declaring a class:

 class Employee: 
 statements

• After declaring the class, you can then create instances (or objects) of the class
by calling the class name

 john = Employee() 
jetic = Employee()

Conc
ep

t

P0

XXXXXXX

P1

OOP

Class Methods
• You can declare methods for your classes, so each instance/object can

perform stuff

• Example inside the Employee class

 class Employee: 
 def sayHello(self): 
 print("This employee is saying hello to you!") 
 
john = Employee() 
john.sayHello()

• Python class methods must have its first argument as self

Conc
ep

t

P0

XXXXXXX

P1

OOP

Class Methods
• Usually, the first method you’d write is the constructor

• The constructor is called when you create the new object

 class Employee:

 def __init__(self):

 self.name = "NoName"

 self.age = 0

 self.supervisor = None

 john = Employee()

 print(john.name)

• The constructor is called when you create the new object

Conc
ep

t

P0

XXXXXXX

P1

OOP

Class Methods
• You can have other arguments in your constructor, as well as any other methods

 class Employee:

 def __init__(self, name=None): # name is an optional argument

 if name is not None:

 self.name = name

 else:

 self.name = "NoName"

 self.age = 0

 self.supervisor = None

 john = Employee()

 print(john.name)

 jetic = Employee("jetic")

 print(john.name)

Conc
ep

t

P0

XXXXXXX

P1

OOP

Class Methods
• Arguments and self

 class Employee: 
 def __init__(…): 
 … 
 def sayHello(self): 
 print(self.name + " says hello to you!")

 jetic = Employee()

• Here, the following line:

 jetic.sayHello()

 is equivalent to:

 Employee.sayHello(jetic)

Conc
ep

t

P0

XXXXXXX

P1

OOP

Extended Dict

Sum
mary

P2

Extended Dict

A class example

Recall when we are counting
words in Hamlet.txt

• When we are using dict, we must first determine if a key exists in the dict,
then perform counting

 counter = {}

 if word in counter:

 counter[word] += 1

 else:

 counter[word] = 1 # Otherwise it will throw KeyError

• Can we make it into a class?

Conc
ep

t

P2

Extended Dict

Creating the counter class
 class Counter:

 def __init__(self):

 self.co = {}

 def increase(self, key):

 if key in self.co:

 self.co += 1

 else:

 self.co = 1

 def get(self, key):

 return 0 if key not in self.co else self.co[key]

Conc
ep

t

P2

Extended Dict

Use it in your shakespear
programme!

Exercise

• Write the word counter class

• Use the word counter class to count words in Hamlet.txt

• Use the word counter class to redo Dict Practice 1 and Dict Practice 2

Exe
rci

se

P2

Extended Dict

