CSCI 120
Introduction to CompSci and
Programming |
Lec 5: Algorithms lli

.—H,-‘.Ap-'n-‘wulw-
dooooooooood
oroaroaa HY o r oo
0 O 8

HBoQHDOK

0
0
7]
o
1]
0
o
1]
0
0
1]
0
o
1]
o
o
o
1]

Jetic GU

Overview

e Focus: Python Programming
e Architecture: von Neumann
e Core ldeas:

1. Binary Search

2. Lab

Binary Search

What is Search?

e The process of looking for stuft
e |n algorithm design

e Finding specific item Iin a data structure, with specific properties

P1
Binary Search

Search Algorithm

10 99 32 / 12 1 56 33 64 /8 9 5 3

27

e An array contains n unigue elements. Design an algorithm to search for the
second largest number in an array.

e We discussed two algorithms for solving this problem in LS6, both linear
algorithms of time complexity O(n)

Case 2: Search Problem

e A sorted array contains n unigue elements. Design an algorithm to search for
a specific item in the array. (e.g. is 13 in the array?)

Case 2: Search Proble&
v

1 3 5 / 9 10 12 27 32 33 56 64 /8 99

tgt = 13

. . e Simple Solution: linear search, go
for 1tem 1n arr:

S through all elements inside the array
1f 1tem == tgt:

return FOUND

e What complexity is this algorithm?
return NOT FOUND

e |s there a better way?

Case 2: Search Problem

tgt = 13 Is there an even better way? nt 1:

for 1tem 1n arr:
1f 1tem == tgt:
return FOUND
return NOT FOUND

e We know the array Is sorted

e Once item is greater than tgt, we
Know it doesn’t exist

e What is the time complexity?

Case 2: Search Problem

e Divide and Conquer

e We split the array into two parts each time
e By comparing with the number in the middle, we know which part the target must be
e Say we are looking for 3, in this case the answer must be in the left partition

e Now, we split again and take the middle, keep searching recursively

Case 2: Search Problem

e Divide and Conquer
e We split the array into two parts each time
e By comparing with the number in the middle, we know which part the target must be
e Say we are looking for 3, in this case the answer must be in the left partition

e Now, we split again and take the middle, keep searching recursively

Case 2: Search Problem

3
J

e Divide and Conquer
e We split the array into two parts each time
e By comparing with the number in the middle, we know which part the target must be
e Say we are looking for 3, in this case the answer must be in the left partition

e Now, we split again and take the middle, keep searching recursively

Case 2: Search Problem

3
J

e This is called binary search, we reduce the search space by half at every step

e Assuming the original sorted array has n elements, search space n
e Step 1: reduce search space to n/2, ...

e Step 2: reduce search space to n/4, ...

 Total steps: log, n, hence the algorithm is O(log n), significant improvement over O(n)

Case 2: Search Problem

e This is called pseudocode, not real
computer programme but easy to

Func BS (arr, tgt): understand for human
1f (len(arr) == 0)
return NOT FOUND e Termination: not found
mid = len(arr)/2
if (arr[mid] == tgt) return FOUND® Termination: found

1f (arr[mid] > tgt)
if (arr[mid] < tgt)

return BS(arr[mid+1:], tgt) * Search right

e Why is log better than linear?

Big-O Complexity Chart

Horrible||Bad||Fair||Good||Excellent

by |o@An) _—

O(n log n)

Operations

O(n)

Elements

100000

