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Overview

• Focus: Python Programming


• Architecture: von Neumann


• Core Ideas:


1. Binary Search


2. Lab
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What is Search?

• The process of looking for stuff


• In algorithm design


• Finding specific item in a data structure, with specific properties
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Search Algorithm

• An array contains  unique elements. Design an algorithm to search for the 
second largest number in an array.


• We discussed two algorithms for solving this problem in LS6, both linear 
algorithms of time complexity 
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Case 2: Search Problem

• A sorted array contains  unique elements. Design an algorithm to search for 
a specific item in the array. (e.g. is 13 in the array?)
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Case 2: Search Problem

• Simple Solution: linear search, go 
through all elements inside the array


• What complexity is this algorithm?


• Is there a better way?
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 tgt = 13


 for item in arr:


     if item == tgt:


         return FOUND


     return NOT_FOUND

Not found



Case 2: Search Problem

• Improvement 1:


• We know the array is sorted


• Once item is greater than tgt, we 
know it doesn’t exist


• What is the time complexity?
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 tgt = 13


 for item in arr:


     if item == tgt:


         return FOUND


     return NOT_FOUND

Not found

Is there an even better way?



Case 2: Search Problem

• Divide and Conquer


• We split the array into two parts each time


• By comparing with the number in the middle, we know which part the target must be


• Say we are looking for 3, in this case the answer must be in the left partition


• Now, we split again and take the middle, keep searching recursively
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Case 2: Search Problem

• This is called binary search, we reduce the search space by half at every step


• Assuming the original sorted array has  elements, search space 


• Step 1: reduce search space to , ...


• Step 2: reduce search space to , ...


• Total steps: , hence the algorithm is , significant improvement over 
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Case 2: Search Problem
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 Func BS(arr, tgt):


     if (len(arr) == 0)


         return NOT_FOUND


     mid = len(arr)/2


     if (arr[mid] == tgt) return FOUND


     if (arr[mid] > tgt)


         return BS(arr[:mid], tgt)


     if (arr[mid] < tgt)


         return BS(arr[mid+1:], tgt)

• This is called pseudocode, not real 
computer programme but easy to 
understand for human


• Termination: not found


• Termination: found


• Search left


• Search right
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n 5 10 100 1000 10000 100000

n/2 
= O(n) 2.5 5 50 500 5000 50000

50 log n 
= O(log n) 116 166 332 498 664 830
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