
23.03.21 06:26CSCI 120

Introduction to CompSci and

Programming I

Lec 5: Algorithms III

Jetic Gū

Overview

• Focus: Python Programming

• Architecture: von Neumann

• Core Ideas:

1. Binary Search

2. Lab

Binary Search

Sum
mary

P1

Binary Search

What is Search?

• The process of looking for stuff

• In algorithm design

• Finding specific item in a data structure, with specific properties

Conc
ep

t

P1

Binary Search

Search Algorithm

• An array contains unique elements. Design an algorithm to search for the
second largest number in an array.

• We discussed two algorithms for solving this problem in LS6, both linear
algorithms of time complexity

n

O(n)

Rev
iew

P0

XXXXXXX

10 99 32 7 12 1 56 33 64 78 9 5 3 27

P1

Binary Search

Case 2: Search Problem

• A sorted array contains unique elements. Design an algorithm to search for
a specific item in the array. (e.g. is 13 in the array?)

n

Conc
ep

t

P0

XXXXXXX

1 3 5 7 9 10 12 27 32 33 56 64 78 99

P1

Binary Search

Case 2: Search Problem

• Simple Solution: linear search, go
through all elements inside the array

• What complexity is this algorithm?

• Is there a better way?

Conc
ep

t

P0

XXXXXXX

1 3 5 7 9 10 12 27 32 33 56 64 78 99

P1

Binary Search

 tgt = 13

 for item in arr:

 if item == tgt:

 return FOUND

 return NOT_FOUND

Not found

Case 2: Search Problem

• Improvement 1:

• We know the array is sorted

• Once item is greater than tgt, we
know it doesn’t exist

• What is the time complexity?

Conc
ep

t

P0

XXXXXXX

1 3 5 7 9 10 12 27 32 33 56 64 78 99

P1

Binary Search

 tgt = 13

 for item in arr:

 if item == tgt:

 return FOUND

 return NOT_FOUND

Not found

Is there an even better way?

Case 2: Search Problem

• Divide and Conquer

• We split the array into two parts each time

• By comparing with the number in the middle, we know which part the target must be

• Say we are looking for 3, in this case the answer must be in the left partition

• Now, we split again and take the middle, keep searching recursively

Conc
ep

t

P0

XXXXXXX

1 3 5 7 9 10 12 27 32 33 56 64 78 99

P1

Binary Search

Case 2: Search Problem

• Divide and Conquer

• We split the array into two parts each time

• By comparing with the number in the middle, we know which part the target must be

• Say we are looking for 3, in this case the answer must be in the left partition

• Now, we split again and take the middle, keep searching recursively

Conc
ep

t

P0

XXXXXXX

1 3 5 7 9 10 12 27 32 33 56 64 78 99

P1

Binary Search

Case 2: Search Problem

• Divide and Conquer

• We split the array into two parts each time

• By comparing with the number in the middle, we know which part the target must be

• Say we are looking for 3, in this case the answer must be in the left partition

• Now, we split again and take the middle, keep searching recursively

Conc
ep

t

P0

XXXXXXX

1 3 5 7 9 10 12 27 32 33 56 64 78 99

P1

Binary Search

√

Case 2: Search Problem

• This is called binary search, we reduce the search space by half at every step

• Assuming the original sorted array has elements, search space

• Step 1: reduce search space to , ...

• Step 2: reduce search space to , ...

• Total steps: , hence the algorithm is , significant improvement over

n n

n/2

n/4

log2 n O(log n) O(n)

Conc
ep

t

P0

XXXXXXX

1 3 5 7 9 10 12 27 32 33 56 64 78 99

P1

Binary Search

√

Case 2: Search Problem

Conc
ep

t

P0

XXXXXXX

P1

Binary Search

 Func BS(arr, tgt):

 if (len(arr) == 0)

 return NOT_FOUND

 mid = len(arr)/2

 if (arr[mid] == tgt) return FOUND

 if (arr[mid] > tgt)

 return BS(arr[:mid], tgt)

 if (arr[mid] < tgt)

 return BS(arr[mid+1:], tgt)

• This is called pseudocode, not real
computer programme but easy to
understand for human

• Termination: not found

• Termination: found

• Search left

• Search right

P1

Binary Search

n 5 10 100 1000 10000 100000

n/2 
= O(n) 2.5 5 50 500 5000 50000

50 log n 
= O(log n) 116 166 332 498 664 830

Conc
ep

t

Why is log better than linear?

