CSCI 120 Introduction to CompSci and Programming I Lec 5: Algorithms III

Jetic Gū

Overview

- Focus: Python Programming
- Architecture: von Neumann
- Core Ideas:
 - 1. Binary Search
 - 2. Lab

P1 Binary Search

Binary Search

What is Search?

- The process of looking for stuff
- In algorithm design
 - Finding specific item in a data structure, with specific properties

10	99	32	7	12	1	56	33	64	78	9	5	3	27
----	----	----	---	----	---	----	----	----	----	---	---	---	----

- second largest number in an array.
- algorithms of time complexity O(n)

Search Algorithm

• An array contains n unique elements. Design an algorithm to search for the

We discussed two algorithms for solving this problem in LS6, both linear

Bina	P1 Ty Search		Ca	Se	2:	S	ea	rcł	٦F) no	bl	er		
	1	3	5	7	9	10	12	27	32	33	56	64	78	99

a specific item in the array. (e.g. is 13 in the array?)

• A sorted array contains n unique elements. Design an algorithm to search for

- Simple Solution: linear search, go through all elements inside the array
- What complexity is this algorithm?
- Is there a better way?

tgt = 13
for item in arr:
 if item == tgt:
 return FOUND
 return NOT FOUND

Case 2: Search Problem

2	27	32	33	56	64	78	99
ı eve	en better	way?	nt 1				

- We know the array is sorted
- Once item is greater than tgt, we know it doesn't exist
- What is the time complexity?

Bina	F ry Searc	P1 ch	Ca	Se	2:	S		rcł	٦F) ro		er		
	1	3	5	7	9	10	12	27	32	33	56	64	78	99

- Divide and Conquer
 - We split the array into two parts each time
 - By comparing with the number in the middle, we know which part the target must be
 - Say we are looking for 3, in this case the answer must be in the left partition
 - Now, we split again and take the middle, keep searching recursively

- Divide and Conquer
 - We split the array into two parts each time
 - By comparing with the number in the middle, we know which part the target must be
 - Say we are looking for 3, in this case the answer must be in the left partition
 - Now, we split again and take the middle, keep searching recursively

Case 2: Search Problem

2	27	32	33	56	64	78	99
---	----	----	----	----	----	----	----

- Divide and Conquer
 - We split the array into two parts each time
 - By comparing with the number in the middle, we know which part the target must be
 - Say we are looking for 3, in this case the answer must be in the left partition
 - Now, we split again and take the middle, keep searching recursively

Case 2: Search Problem

2	27	32	33	56	64	78	99
---	----	----	----	----	----	----	----

- This is called binary search, we reduce the search space by half at every step
 - Assuming the original sorted array has n elements, search space n
 - Step 1: reduce search space to n/2, ...
 - Step 2: reduce search space to n/4, ...

Case 2: Search Problem

2	27	32	33	56	64	78	99
---	----	----	----	----	----	----	----

• Total steps: $\log_2 n$, hence the algorithm is $O(\log n)$, significant improvement over O(n)

Case 2: Search Problem **P1 Binary Search**

Func BS(arr, tgt): if (len(arr) == 0)return NOT FOUND mid = len(arr)/2if (arr[mid] == tgt) return FOUND • Termination: found (arr[mid] > tgt) if return BS(arr[:mid], tgt) if (arr[mid] < tgt)</pre> return BS(arr[mid+1:], tgt)

- This is called pseudocode, not real computer programme but easy to understand for human
- Termination: not found
- - Search left
 - Search right

Binary Search Why is log better than linear? **Big-O Complexity Chart** Horrible Bad Fair Good Excellent O(n!) O(2^n) O(n^2) O(n log n) Operations O(n) O(log n), O(1) Elements

n	5	10	100	1000	10000	100000
n/2 = O(n)	2.5	5	50	500	5000	50000
50 log n = O(log n)	116	166	332	498	664	830

