CSCI 165 Introduction to the Internet and the World Wide Web Lec 3: Graphics

Jetic Gū

Overview

- Focus: Web Development
- Architecture: Internet
- Core Ideas:
 - 1. Review on Bitmap Image Representation
 - 2. Vector graphics

P1 Bitmap Image

Image on Webpages Quick review

Bitmap Image Recall Your Basic HTML

- Displaying Images using
 - User downloads the whole image file when loading the webpage
 - src attribute specifies the url to the image
 - Require image formats supported by the browser
 e.g. JPEG, these types of images are called **bitmap graphics**
 - Common formats: JPEG, GIF, PNG, etc.

P1 Bitmap Image

- **Bitmap** Images
 - Images represented using **pixels**
 - Each pixel is represented using 3 bytes¹ of values: **Red**, **Green**, **Blue**. Different combinations make up different colours
 - 3000 x 2000 image **without** compression will require: 3000 x 2000 x 3 = 18MB storage

1. Image formats such as DNG and TIFF allow for higher number of bytes per colour channel, but JPEG is usually limited to 24bit per pixel (3 by

Recall Your Basic HTML

P1 Bitmap Image

- Loading bitmap images
 - Reused already downloaded image files on your machine (caching)
 - Download entire image **before** 2. loading the webpage
 - 3. Download entire image while loading the webpage
 - Download JPEG progressively 4. while loading the webpage¹
- 1. Require complex coding: progressive JPEG
- 2. Image credit: <u>https://www.hostinger.com/tutorials/website/improving-website-performance-using-progressive-jpeg-images</u>

Recall Your Basic HTML

Direct normal download

Bitmap Image P1 Problems with Bitmap Images

- Computer monitors are getting higher resolutions 1080p -> 4K -> 6K, etc.
- Higher resolution displays require higher resolution images
 With bitmap, you need to keep updating your images until there's no higher resolution avail for them
- Hi-Res Image -> Larger Image Files
 The user has to download massive image files when using your webpage, this can
 sloooooow things down
 Output
 Description:
 Description:
 - 10% failure rate for 12MB webpage, about 30sec loading time¹
 - Optimal: HTML + JS + CSS + Images <1MB size, how can we achieve this for our images?
- 1. Use the developer tool in your browser to check the speed and size

P2 Vector Image

Vector Images

What is it, how to use it

Vector Image Image Representations in Web

- **Bitmap Images** \bullet
 - Grids of pixels, usually come in JPEGs \bullet
 - Each pixel has its colour value stored as 3 bytes of binary
 - Fixed resolution cannot scale up, small images will look **blurry** on Hi-Res displays
- **Vector Images**
 - Images stored as collections of basic shapes

Vector Images

- Instead of Pixels, it stores
 - basic shapes Lines, Circles, Curves, etc.
 - relative sizes of shapes
 - coordinates of shapes
 - transparency of sections of shapes

Vector Images

- Why Vector Images?
 - Ability to upscale unlimitedly don't worry about resolutions, you are covered
 - Smaller footprint Images tend to be smaller in size than Hi-Res JPEGs
 - Easy to edit you can manipulate shapes separately in an editor
 - Con: cannot represent all images You won't be able to make Mona Lisa into Vector Images

Common Formats

- SVG: Scalable Vector Graphics
 - Vector Image format designed for web use
 - Tons of editors on the internet You can use whatever you want, Greg Baker recommends inkscape.org
 - Right: leica-mp.svg from wikipedia, 56KB
- Other formats: PDF, CAD, Illustrator, etc.

Leica MP

- Part of Assignment 3
 - Design a logo for yourself using <u>inkscape.org</u>

 - Store the image as SVG
 - without compression, compare their differences in size

Design Your Logo

• The logo must contain at least 10 different shapes, i.e. not too simple

• Store the image as 100x100 JPEG, 500x500 JPEG, 1000x1000 JPEG

Imaging Techniques Colour Depth

Colour Depth

- Recall
 - In JPEG, each image is represented by a grid of pixels
 - Each pixel is represented by 3 values, indicating Red Channel, Green Channel, Blue Channel (RGB)
 - Other colour representations do exist such as CMYK, but RGB is most common

Colour Depth

- Colour depth
 - 24-bit per pixel
 - 8-bit per colour channel that's 256 shades of Red/Green/ Blue!
 - Is that a lot?

1. https://howtoscan.ca/scanning-tips/difference-between-24-bit-vs-48-bit-scans.php

Colour Depth

P3 Techniques

1. https://howtoscan.ca/scanning-tips/difference-between-24-bit-vs-48-bit-scans.php

48 Bits Means MORE Smooth Colc

Colour Depth

- How much colour depth do you need?
 - Photographic artwork: 48-bit, 16bit per channel per pixel, 100% size
 - Normal Web Images: 24-bit, 8bit per channel per pixel, 50% size
 - Simple stuff like logo: 8-bit, from a colour palette, 16.7% size

Colour Depth

- Bitmap Image Formats
 - JPEG: 24bit only
 - PNG: 8bit, 24bit, 32bit
 - GIF: 8bit

