
08.03.21 07:20CSCI 165
Introduction to the Internet and the

World Wide Web
Lec 1: Javascript

Jetic Gū

Overview

• Focus: Web Development

• Architecture: Internet

• Core Ideas:

1. Adding Javascript to Your Webpage

2. Basic Javascript Syntax

Using Javascript

Sum
mary

P1
Hello JS

In your webpage

Using Javascript

• What is Javascript?

• Programming Language

• Turning complete

• Interpretive language: doesn’t need compilation, in fact all modern browsers
supports it

Conc
ep

t

P0
XXXXXXX

P1
Hello JS

Using Javascript
• Why Javascript?

• HTML and CSS: static, shows webpage with still content, doesn’t interact
much, cannot respond to user input1

• Javascript allows for dynamic interaction

• Take user input, generate content accordingly 
— Respond to user events (clicking, typing, etc.) 
— Modify existing content (add, remove, change, etc.)

• Security: only access permitted information2

Conc
ep

t

P0
XXXXXXX

1. Certain simple stuff are supported in HTML5, but in general it is still like unfolding a paper: you are not really adding new stuff
2. Achieved with other libraries and software (such as databases through SQL)

P1
Hello JS

Basic Webpage (Now)

• Static Content Display

• (*.html) HTML: Hypertext Markup Language

• (*.css) Optional CSS: Stylish presentation of stuff

• Dynamic content

• (*.js) Javascript stuff, make your webpage into a webapp

Conc
ep

t

P0
XXXXXXX

P1
Hello JS

Basic Webpage (Now)

• Static Content Display

• (index.html) HTML: Hypertext Markup Language

• (style.css) Optional CSS: Stylish presentation of stuff

• Dynamic content

• (control.js) Javascript stuff, make your webpage into a webapp

Exa
mple

P0
XXXXXXX

P1
Hello JS

Including control.js

• Inside index.html

• In the head section, include the following line:

 <script src="control.js"></script>

• Similar to CSS isn’t it

Exa
mple

P0
XXXXXXX

P1
Hello JS

Javascript stuff
• Inside control.js

• Have this only line here

 alert("I like cheese!");

• In javascript, each line ends with semicolon ;

• alert is a function here that generates a pop up box, inside the
parenthesis are the parameters of this function 
-- Just like in math!f(x)

Exa
mple

P0
XXXXXXX

P1
Hello JS

Running the Code

• Load up index.html in your browser, a pop up box will show up

• Every time you load the webpage, few things are going to happen

1. The browser is going to download everything referenced in the head
section 
-- CSS files, JS files, etc.

2. The browser is going to execute the scripts and style sheets 
Thus running all of the code, which is not what we always want (why?)

Exa
mple

P0
XXXXXXX

P1
Hello JS

User event triggered functions

• In control.js, change the code to

 amPressed = function() {

 alert("I have been pressed!");

 }

• In index.html, add

 <p onclick="amPressed()">Press me!</p>

Exa
mple

P0
XXXXXXX

P1
Hello JS

What is going on here?

User event triggered functions
• control.js

 amPressed = function() { // You can also add parameters in the parenthesis here

 alert("I have been pressed!");

 // This is a single instruction/statement

 }

• We are creating a user-defined function called amPressed here 
alert() is a builtin function

• The code will NOT be executed unless explicitly called

• The code inside the {} are executed sequentially when the function is called. 
No need for semicolon after } here

Exa
mple

P0
XXXXXXX

P1
Hello JS

User event triggered functions

• index.html

 <p onclick="amPressed()">Press me!</p>

• In onclick, here is a HTML DOM (Document Object Model) Mouse Event, it
triggers whatever is in the quotation marks, in this instance the Javascript
function amPressed()

Exa
mple

P0
XXXXXXX

1. Full list of Mouse Events: https://www.w3schools.com/jsref/obj_mouseevent.asp
2. Full list of DOM Events: https://www.w3schools.com/jsref/dom_obj_event.asp

P1
Hello JS

https://www.w3schools.com/jsref/obj_mouseevent.asp
https://www.w3schools.com/jsref/dom_obj_event.asp

Exercise

• Build a new HTML webpage with a single line of text saying: 
click me!

• Use JS to create a popup window, which appears when the text above is
clicked

Exe
rci

se

P1
Hello JS

Javascript Syntax

Sum
mary

P2
JS Syntax

Variables, Types, Conditions, Loops

Variables
var name = expression;
var clientName = "Connie Client";
var age = 32;
var weight = 127.4;

• variables are declared with the var keyword (case sensitive)

• types are not specified, but JS does have types ("loosely typed")

• Number, Boolean, String, Array, Object, Function, Null,
Undefined

• can find out a variable's type by calling typeof

Conc
ep

t

P2
JS Cont.

Number type
var enrollment = 99;

var medianGrade = 2.8;

var credits = 5 + 4 + (2 * 3);

• integers and real numbers are the same type (no int vs. double)

• same operators: + - * / % ++ -- = += -= *= /= %=

• similar precedence to Java, Python, C++

• many operators auto-convert types: "2" * 3 is 6

Conc
ep

t

P2
JS Cont.

Comments
(same as Java/C/C++)

// single-line comment
/* multi-line comment */

• identical to Java and C++’s comment syntax

• recall: 4 comment syntaxes

• HTML: <!-- comment -->

• CSS/JS/PHP: /* comment */

• Java/JS/PHP: // comment

• PHP: # comment

Conc
ep

t

P2
JS Cont.

 Math object

var rand1to10 = Math.floor(Math.random() * 10 + 1);
var three = Math.floor(Math.PI);

• methods: abs, ceil, cos, floor, log, max, min, pow, random,
round, sin, sqrt, tan

• properties: E, PI

Conc
ep

t

P2
JS Cont.

 Special values:
null and undefined

var ned = null;
var benson = 9;
// at this point in the code,
// ned is null
// benson's 9
// caroline is undefined

• undefined : has not been declared, does not exist

• null : exists, but was specifically assigned an empty or null value

• Why does JavaScript have both of these?

Conc
ep

t

P2
JS Cont.

 Logical operators
• Similar to Java/C/C++

• > < >= <= && || ! == != === !==

• most logical operators automatically convert types:

• 5 < "7" is true

• 42 == 42.0 is true

• "5.0" == 5 is true

• === and !== are strict equality tests; checks both type and value

• "5.0" === 5 is false

Conc
ep

t

P2
JS Cont.

 if/else statement
(same as Java/C/C++)

if (condition) {

 statements;

} else if (condition) {

 statements;

} else {

 statements;

}

• identical structure to Java's if/else statement

• JavaScript allows almost anything as a condition

Conc
ep

t

P2
JS Cont.

Boolean type
(same as Java/C/C++)

var iLike190M = true;

var ieIsGood = "IE6" > 0; // false

if ("web devevelopment is great") { /* true */ }

if (0) { /* false */ }

• any value can be used as a Boolean

• "falsey" values: 0, 0.0, NaN, "", null, and undefined

• "truthy" values: anything else

• converting a value into a Boolean explicitly:

var boolValue = Boolean(otherValue);

var boolValue = !!(otherValue);

Conc
ep

t

P2
JS Cont.

 for loop
(same as Java/C/C++)

var sum = 0;
for (var i = 0; i < 100; i++) {
 sum = sum + i;
}

var s1 = "hello";
var s2 = "";
for (var i = 0; i < s.length; i++) {
 s2 += s1.charAt(i) + s1.charAt(i);
}
// s2 stores "hheelllloo"

Conc
ep

t

P2
JS Cont.

while loops
(same as Java/C/C++)

while (condition) {
 statements;
}

do {
statements;

} while (condition);

• break and continue keywords also behave as in Java/C/C++

Conc
ep

t

P2
JS Cont.

Popup boxes

alert("message"); // message

confirm("message"); // returns true or
false

prompt("message"); // returns user
input string

Conc
ep

t

P2
JS Cont.

Arrays
var name = []; // empty array

var name = [value, value, ..., value]; // pre-filled

name[index] = value; // store element

var ducks = ["Huey", "Dewey", "Louie"];

var stooges = []; // stooges.length is 0

stooges[0] = "Larry"; // stooges.length is 1

stooges[1] = "Moe"; // stooges.length is 2

stooges[4] = "Curly"; // stooges.length is 5

stooges[4] = "Shemp"; // stooges.length is 5

Conc
ep

t

P2
JS Cont.

Array methods
var a = ["Stef", "Jason"]; // Stef, Jason

a.push("Brian"); // Stef, Jason, Brian

a.unshift("Kelly"); // Kelly, Stef, Jason, Brian

a.pop(); // Kelly, Stef, Jason

a.shift(); // Stef, Jason

a.sort(); // Jason, Stef

• array serves as many data structures: list, queue, stack, ...

• methods: concat, join, pop, push, reverse, shift, slice, sort, splice, toString, unshift

• push and pop add / remove from back

• unshift and shift add / remove from front

• shift and pop return the element that is removed

Conc
ep

t

P2
JS Cont.

String type
• methods: charAt, charCodeAt, fromCharCode, indexOf, lastIndexOf, replace,
split, substring, toLowerCase, toUpperCase, length

• charAt returns a one-letter String (there is no char type)

• Strings can be specified with "" or ''

• concatenation with + :

• 1 + 1 is 2, but "1" + 1 is "11"

var s = "Connie Client";

var fName = s.substring(0, s.indexOf(" ")); // "Connie"

var len = s.length; // 13

var s2 = 'Melvin Merchant';

Conc
ep

t

P2
JS Cont.

 More about String
• escape sequences behave as in Java: \' \" \& \n \t \\

• converting between numbers and Strings:

var count = 10;

var s1 = "" + count; // "10"

var s2 = count + " bananas, ah ah ah!"; // "10 bananas, ah ah ah!"

var n1 = parseInt("42 is the answer"); // 42

var n2 = parseFloat("booyah"); // NaN

• accessing the letters of a String:

var firstLetter = s[0]; // fails in IE

var firstLetter = s.charAt(0); // does work in IE

var lastLetter = s.charAt(s.length - 1);

Conc
ep

t

P2
JS Cont.

Splitting strings: split and join
var s = "the quick brown fox";

var a = s.split(" "); // ["the", "quick", "brown", "fox"]

a.reverse(); // ["fox", "brown", "quick", "the"]

s = a.join("!"); // "fox!brown!quick!the"

• split breaks apart a string into an array using a delimiter

• can also be used with regular expressions

• join merges an array into a single string, placing a delimiter between them

Conc
ep

t

P2
JS Cont.

