CSCI 150

Introduction to Digital and Computer System Design
Lecture 3: Combinational Logic Design VIII

Jetic Gū

Overview

- Focus: Arithmetic Functional Blocks
- Architecture: Combinatory Logical Circuits
- Textbook v4: Ch4 4.4, 4.5; v5: Ch2 2.9, Ch3 3.11, 3.12
- Core Ideas:

1. Overflow
2. Signed Arithmetics
3. Other Functions

Adder Subtractor Units (Unsigned)

- Binary Adder: 1-bit Half Adder; 1-bit Full Adder; n-bit Adder
- Binary Subtractor: 1-bit Subtractor; n-bit subtractor
- $2 s$ complement
- Binary Adder-Subtractor Unit using Adder, Subtractor, Complementer and Multiplexer
- Binary Adder-Subtractor Unit using Adder and XOR

Overflow

- If we start with $2 n$-bit numbers, but the result requires more than n-bits, then there is an overflow

Overflow

- This is 55 -bit addition
- If the carry bit $C=0$, there is no overflow
- If the carry bit $C=1$, there is overflow!

Overflow

- In 4 -bit unsigned binary addition, does $7+8$ cause overflow?
- Does $10+7$?

Overflow

- In 8-bit unsigned binary Multiplication, does 12×12 cause overflow?
- Does 17×17 ?

Signed Arithmetics Functions

Difference

- Unsigned n-bit Integer
- n-bits for actual value (magnitude): $\left[0,2^{n}-1\right]$
- Signed n-bit Integer
- Leftmost bit for sign: 0 for positive and zero; 1 for negative
- $n-1$-bits for actual value: $\left[0,2^{n-1}-1\right]$ (sign=0), $\left[-2^{n-1},-1\right]$ (sign=1)

Signed 2s Complement

- 2s Complement of $X(X \geq 0)$
- $2^{n}-X$
- Signed 2s Complement of X
- Sign=0, X
- $\operatorname{Sign}=1,2^{n-1}+X$ Invert magnitude bits then plus 1
!!!! 2s complement and
Signed 2s complement are different!

Decimal	Signed	Signed 2s Complement
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	1000	1000

Signed 2s Complement

- Let X be a positive number
- Signed 2s complement of X is X
- Signed 2 s complement of $-X$ is the 2s complement of X
- 2s complement of [Signed 2s complement of $-X]$ is $-X$

Decimal	Signed	Signed 2s Complement
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	1000	1000

Signed 2s Complement Addition

- In Signed 2s complement, addition is like unsigned
- Step1: convert the two numbers to Signed 2s Complement
- Step2: perform addition using unsigned adder
- Step3: output the Signed 2s Complement of the result from Step2
- $1101+0011=0000$
(Decimal) $-3+3=0$

Decimal	Signed	Signed 2s Complement
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	Identical
2	0010	0011
1	0001	0010
0	0000	0001
-1	1001	0000
-2	1010	1111
-3	1011	1110
-4	1100	1101
-5	1101	1100
-6	1110	1011
-7	1111	1010
-8	1000	1001

Signed 2s Complement Subtraction

- In Signed 2s complement, subtraction is also like unsigned
- Step1: convert the two numbers to Signed 2s Complement
- Step2: perform addition using unsigned subtractor
- Step3: output the Signed 2s Complement of the result from Step2
- 0000-0001 = 1111
(Decimal) 0-1 = -1

Decimal	Signed	Signed 2s Complement
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	1000	1000

Signed 2s Complement Addition

- Perform signed 8-bit binary addition of $12+15$

Step 1: Signed 2s $00001100+00001111$
Step 2: Add using unsigned adder 00011011
Step 3: Convert to 2s complement 00011011

Signed 2s Complement Addition

- Perform signed 8-bit binary addition of $12+15$
- Perform signed 8-bit binary addition of $-12+15$

```
Step 1: Signed 2s 1111 0100+00001111
Step 2: Add using unsigned adder 0000 0011
Step 3: Convert to 2s complement 0000 0011
```


Signed 2s Complement Addition

- Perform signed 8-bit binary addition of $12+15$
- Perform signed 8-bit binary addition of $-12+15$
- Perform signed 8 -bit binary addition of $12+(-15)$

Signed 2s Complement Addition

- Perform signed 8-bit binary addition of $12+15$
- Perform signed 8-bit binary addition of $-12+15$
- Perform signed 8-bit binary addition of $12+(-15)$
- Perform signed 8-bit binary addition of $-12+(-15)$

$$
\text { Step 1: } 11110100+11110001
$$

Step 2: Add using unsigned adder 11100101
Step 3: Convert to 2s complement 10011011

Signed 2s Complement Subtraction

- Perform signed 8-bit binary Subtraction of 17-14

Step 1: Signed 2s 0001 0001-0000 1110
Step 2: Subtract using unsigned 00000011

- Step 3: Convert to 2s complement 00000011

Signed 2s Complement Subtraction

- Perform signed 8-bit binary Subtraction of 17-14
- Perform signed 8 -bit binary Subtraction of -17-14

Step 1: Signed 2s 11101111 - 00001110
Step 2: Subtract using unsigned 11100001
Step 3: Convert to 2s complement 10011111

Signed 2s Complement Subtraction

- Perform signed 8-bit binary Subtraction of 17-14
- Perform signed 8-bit binary Subtraction of -17-14
- Perform signed 8-bit binary Subtraction of 17 - (-14)

Step 1: Signed 2s 00010001 - 11110010
Step 2: Subtract using unsigned 00011111
Step 3: Convert to 2s complement 00011111

Signed 2s Complement Subtraction

- Perform signed 8-bit binary Subtraction of 17-14
- Perform signed 8 -bit binary Subtraction of -17-14
- Perform signed 8-bit binary Subtraction of 17 - (-14)
- Perform signed 8-bit binary Subtraction of -17-(-14)

Step 1: Signed 2s 11101111 - 11110010
Step 2: Subtract using unsigned 11111101
Step 3: Convert to 2s complement 10000011

Think about it

- Can signed n-bit binary addition cause overflow?
- Pos + Pos
- Pos + Neg (Neg + Pos)
- Neg + Neg
- Can signed n-bit binary subtraction cause overflow?

Signed Arithmetics Functions

- Signed 2s Complement Representation
- Signed Binary Addition and Subtraction

Other Arithmetics Functions

Incrementing, Decrementing, Multiplication and
Division, Zero Fill and Extension

1. Incrementing and Decrementing

- Incrementing: adding a fixed value to an arithmetic variable (usually 1)
- Decrementing: subtracting a fixed value from an arithmetic variable (usually 1)

2. Multiplication and Division By Constants

- Design of full multiplier and divider is not hard in theory, but quite laborious

1. Truth table: $2 \times n$-bit inputs, $2^{2 n}$ rows in truth table Require automated design
2. Use functional blocks
e.g. n adders stacked with n enablers

- Friends don't let friends do this by hand.

2. Multiplication and Division By Constants

- Design of full multiplier and divider is not hard in theory, but quite laborious
- By Constants
- n-bit multiplied by (or divided by) m-bit, where $m<n$ e.g. 4-bit to 3-bit multiplier
- easier to design by hand, can be used as functional blocks for full implementation
- Shift: shifting bits left or right
$(1)_{2} \ll 3$ == (1000) 2 ; (111) 2 >> 2 == (1) $)_{2}$
- Zero Fill: prepend/append Zeroes
$(1100)_{2} \rightarrow(00001100)_{2 ;}(1100)_{2} \rightarrow(11000000)_{2} ;$
- Extension (of signed 2s complement integer): prepend Zeroes or 1 s without changing value
Positive: prepend zeros; Negative: prepend 1s;

1. Incrementing and Decrementing
2. Multiplication and Division by Constants
3. Zero Fill and Extension

Lecture 3 Review

- Binary Adder: 1-bit Half Adder; 1-bit Full Adder; n-bit Adder
- Binary Subtractor: 1-bit Subtractor; n-bit subtractor
- 2s complement
- Binary Adder-Subtractor Unit using Adder, Subtractor, Complementer and Multiplexer
- Binary Adder-Subtractor Unit using Adder and XOR

1. Specification: Write a specification for the circuit
2. Formulation: Derive relationship between inputs and outputs of the system e.g. using truth table or Boolean expressions
3. Optimisation: Apply optimisation, minimise the number of logic gates and literals required
4. Technology Mapping: Transform design to new diagram using available implementation technology
5. Verification: Verify the correctness of the final design in meeting the specifications

Functional Components (1)

- Value-Fixing, Transferring, Inverting, Enabler
- Decoder
- Input: $A_{0} A_{1} \ldots A_{n-1}$
- Output: $D_{0} D_{1} \ldots D_{2^{n}-1}, D_{i}=m_{i}$

- Encoder
- Input: $m_{0}, \ldots, m_{2^{n}-1}$ with only one positive value
- Output: A_{0}, \ldots, A_{n-1}

- Priority Encoder: validity, priority output
- Multiplexer
- Switching between multiple input channels

Arithmetic Units (Unsigned)

- Binary Adder: 1-bit Half Adder; 1-bit Full Adder; n-bit Adder
- Binary Subtractor: 1-bit Subtractor; n-bit subtractor
- 2s complement
- Binary Adder-Subtractor Unit using Adder, Subtractor, Complementer and Multiplexer
- Binary Adder-Subtractor Unit using Adder and XOR

Arithmetic Units

- Signed 2s Complement
- Signed Addition and Subtraction
- Incrementing and Decrementing
- Multiplication and Division by Constants
- Zero Fill and Extension

Today’s Tasks

- 1-bit Half Adder
- 1-bit Full Adder using 1-bit Half Adder in Schema Diagram (Logic Circuit Diagram)
- 4-bit Full Adder using 1-bit Full Adder in Schema Diagram (Logic Circuit Diagram)
- 4-bit Adder-Subtractor using 4-bit Full Adder in Schema Diagram (Logic Circuit Diagram)

