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Introduction to Digital and Computer 

System Design

Lecture 2: Combinational Logical Circuits V

Jetic Gū



Overview
• Focus: Boolean Algebra


• Architecture: Combinatory Logical Circuits


• Textbook v4: Ch2 2.8, 2.9. 2.10; v5: Ch2 2.6, 2.7


• Core Ideas:


1. Other Gate Types: XOR, NAND, NOR, Buffer, High-Impedance, Odd 
Function


2. Lecture 2 Review



Boolean Algebra I-III
I. AND, OR, NOT Operators and Gates


• Simple digital circuit implementation


• Algebraic manipulation using Binary Identities


II. Standard Forms


• Minterm & Maxterm


• Sum of Products & Product of Sums


III. Optimisation Using K-Map (For 2,3,4 Variables)
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Delays

• Gate Delay


• The time required for a change in value of a signal to propagate from input 
to output (of a Gate)


• Propagation Delay


• The time required for a change in value of a signal to propagate from input 
to output (of a Circuit)
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Delays

• : Propagation Delay: longest time for propagating from input to output


• : Hight2Low propagation time; : Low2High propagation time; 

tpd

tPHL tPLH
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for the edge in question, and whether the edge will result in a change in the ID out-
put. Since edge b occurs before the end of the rejection time for edge a in the ND 
output, edge a does not appear in the ID output. Since edge b does not change the 
state of ID, it is ignored. Since edge d occurs at the rejection time after edge c in the 
ND output, edge c does appear. Edge e, however, occurs within the rejection time 
after edge d, so edge d does not appear. Since edge c appeared and edge d did not 
appear, edge e does not cause a change.

Next, we want to consider further the components that make up the gate delay 
within a circuit environment. The gate itself has some !xed inherent delay. Because it 
represents capacitance driven, however, the actual  fan-  out of the gate, in terms of 
standard loads, discussed in Chapter 5, also affects the propagation delay of the gate. 
But depending upon the loading of the gate by the inputs of the logic attached to its 
output, the overall delay of the gate may be signi!cantly larger than the inherent 
gate delay. Thus, a simple expression for propagation delay can be given by a formula 
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Transport and Inertial Delays
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Transport and Inertial Delays

• Transport Delay: output in response to input changes after propagation delay

• Inertial Delay: if a value changes twice in a short time (rejection time), ignore
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Parameters of Gate Delay
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Parameters of Gate Delay

• Fan-in 
number of inputs of a logic gate

• Fan-out (standard load) 
number of gates that each logic gate can drive while providing voltage levels 
in the guaranteed range is called the standard load or fan-out
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• Digital circuits are driven by power, each component also takes power
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• OR Gate: 0.8 SL; AND Gate: 1.00 SL;


• Delay for AND: 



• Delay for OR: 

tpd = 0.07 + 0.021 × ∑ InputSL

tpd = 0.05 + 0.02 × ∑ InputSL
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• OR Gate: 0.8 SL; AND Gate: 1.00 SL;


• Delay for AND: 



• Delay for OR: 

tpd = 0.07 + 0.021 × ∑ InputSL

tpd = 0.05 + 0.02 × ∑ InputSL

X
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AND
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• Estimation for OR2 



• Precise estimation is very hard, since 
we lack a lot of these information


• We can ignore this computation, but 
you should know roughly

tpd = 0.05 + 0.02 × (0.8 + 1.00) = 0.086ns
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XOR Gate
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XOR Gate
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XOR Gate 
Exclusive-OR Z = X ⊕ YX

Y

XOR Truth Table

0 0 0

0 1 1

1 0 1

1 1 0

Z = X ⊕ YYX

= XY + XY



XOR Gate
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•

X ⊕ 0 = X

X ⊕ X = X

X ⊕ Y = X ⊕ Y

• 


• 


•

X ⊕ 1 = X

X ⊕ X = 1

X ⊕ Y = X ⊕ Y



Odd and Even Functions
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• Odd Functions


• Outputs 1 if the number of 1s in the input is an Odd number


• 2 variables: XOR


• Even Functions


• Outputs 1 if the number of 1s in the input is an Even number


• 2 variables: XNOR



Odd Function K-Map
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expression. In particular, the 3-variable case can be converted to a Boolean expres-
sion as follows:

 X ⊕ Y ⊕ Z = (XY + XY)Z + (XY + X Y)Z

 = XY Z + XYZ + X YZ + XYZ

The Boolean expression clearly indicates that the 3-variable  exclusive-  OR is equal 
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Hence, 
whereas in the 2-variable function only one variable need be equal to 1, with three or 
more variables an odd number of variables must be equal to 1. As a consequence, the 
 multiple-  variable  exclusive-  OR operation is de!ned as the odd function. In fact, 
strictly speaking, this is the correct name for the ⊕  operation with three or more 
variables; the name “ exclusive-  OR” is applicable to the case with only two variables.

The de!nition of the odd function can be clari!ed by plotting the function on a 
map. Figure 2-22(a) shows the map for the 3-variable odd function. The four min-
terms of the function differ from each other in at least two literals and hence cannot 
be adjacent on the map. These minterms are said to be distance two from each other. 
The odd function is identi!ed from the four minterms whose binary values have an 
odd number of 1s. The 4-variable case is shown in Figure 2-22(b). The eight minterms 
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Z = XXNOT Gate

NOR Gate Z = X + Y
X
Y

XNOR Gate Z = X ⊕ YX
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Summary
• Delay: Remember the Definitions!

• Gate Delay and Propagation Delay

• Transport and Inertial Delays

• Standard Load

• Other Gates: Remember the Definitions!

• XOR, Buffer, 3-State, NAND, NOR
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