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CSCI 150

Introduction to Digital and Computer 

System Design

Lecture 2: Combinational Logical Circuits IV

Jetic Gū



Overview

• Focus: Boolean Algebra


• Architecture: Combinatory Logical Circuits


• Textbook v4: Ch2 2.4, 2.5; v5: Ch2 2.4, 2.5


• Core Ideas:


1. Boolean Algebra III: K-Map



Boolean Algebra I&II
• AND, OR, NOT Operators and Gates


• Simple digital circuit implementation


• Algebraic manipulation using Binary Identities


• Standard Forms


• Minterm & Maxterm


• Sum of Products & Product of Sums
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Boolean Algebra III: 
K-Map
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Cost Criteria;

Map and Map Manipulation



K-Map

• Karnaugh Map, or just K-Map


• For optimising 2-4 variable boolean expressions


• Skip: 5,6 variable K-Maps can also be drawn but are not very intuitive to 
use
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than  sum-  of-  products and  product-  of-  sums, the  gate-  input count must be deter-
mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is 
not necessarily unique. It is sometimes possible to !nd two or more expressions that 
satisfy the cost criterion applied. In that case, either solution is satisfactory from the 
cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The 
number of squares in each map is equal to the number of minterms in the corre-
sponding function. In our discussion of minterms, we de!ned a minterm mi to go with 
the row of the truth table with i in binary as the variable values. This use of i to 
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• Number of squares in each map is equal to the number of minterms for the same number of variables, 
light blue digit above is the index (of minterm)


• Two squares are adjacent if they only differ in one variable


• Binary value inside at each position indicates the truth table value for that term



Three Variable Maps
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• Number of squares in each map is equal to the number of minterms for the same number of variables, 
light blue digit above is the index (of minterm)


• Two squares are adjacent if they only differ in one variable


• Binary value inside at each position indicates the truth table value for that term
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• Number of squares in each map is equal to the number of minterms for the same number of variables, 
light blue digit above is the index (of minterm)


• Two squares are adjacent if they only differ in one variable


• Binary value inside at each position indicates the truth table value for that term



Two Variable Maps 
Optimisation
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• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 1, 
covering all 1s; 
The length of the edge needs to be a 
power of 2


• Step 3: Read off the selected 
rectangles, connect with OR
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Truth Table

X Y F
0 0 0

0 1 1

1 0 0

1 1 1

0
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Truth Table

X Y F
0 0 1

0 1 1

1 0 0

1 1 1

1

1

1

0 X + Y

• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 1, 
covering all 1s; 
The length of the edge needs to be a 
power of 2


• Step 3: Read off the selected 
rectangles, connect with OR
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• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 
1, covering all 1s; 
The length of the edge needs to 
be a power of 2


• Step 3: Read off the selected 
rectangles, connect with OR

F(X, Y, Z) = Σm(0,1,2,3,4,5)

1

1

1

1

1 1

= X + Y
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• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 
1, covering all 1s; 
The length of the edge needs to 
be a power of 2


• Step 3: Read off the selected 
rectangles, connect with OR
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F(X, Y, Z) = Σm(0,2,4,5,6)
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1 11
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= XY + Z



Three Variable Maps 
Optimisation

• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 
1, covering all 1s; 
The length of the edge needs to 
be a power of 2


• Step 3: Read off the selected 
rectangles, connect with OR

Exe
rci

se

P1

Optimisation

F(X, Y, Z) = Σm(1,3,4,5,6)

1
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= XZ + XY + XZ



Four Variable Maps 
Optimisation

Exe
rci

se

P1

Optimisation

F(W, X, Y, Z) = Σm(0,1,2,4,5,6,8,9,10,12,13)

• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 
1, covering all 1s; 
The length of the edge needs to 
be a power of 2


• Step 3: Read off the selected 
rectangles, connect with OR
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F(W, X, Y, Z) = WYZ + WZ + XY + YZ + WXZ

• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 
1, covering all 1s; 
The length of the edge needs to 
be a power of 2


• Step 3: Read off the selected 
rectangles, connect with OR
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• Sometimes we don’t care what 
the output is when the inputs are 
in certain combinations
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• Boolean Algebra III: K-Map


• Two Variable K-Map


• Three Variable K-Map


• Four Variable K-Map
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Exercises

• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 
1, covering all 1s; 
The length of the edge needs to 
be a power of 2


• Step 3: Read off the selected 
rectangles, connect with OR
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F(X, Y, Z) = Σm(0,2,6,7)
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1 1 1

1 1 1



Exercises

• Step 1: Enter the values


• Step 2: Identify the set of largest 
rectangles in which all values are 
1, covering all 1s; 
The length of the edge needs to 
be a power of 2


• Step 3: Read off the selected 
rectangles, connect with OR

Exe
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Optimisation

F(X, Y, Z) = Σm(0,2,3,4,5,6)

1 1 1

1 1 1


