CSCI 150 Introduction to Digital and Computer System Design Lecture 4: Sequential Circuit Review

Jetic Gū 2020 Fall Semester (S3)

Overview

- Focus: Basic Information Retaining Blocks
- Architecture: Sequential Circuit
- Textbook v4: Ch5; v5: Ch4
- Core Ideas:
 - 1. What we've learned in Sequential Circuit
 - 2. How to apply sequential circuit design in real life?

Quick Review Sequential circuits and How to Design 'em

Storage Elements 1. circuits that can store binary information

2. State

partial results, instructions, etc.

- 3. Synchronous Sequential Circuit Signals arrive at discrete instants of time, outputs at next time step
- **Asynchronous Sequential Circuit** 4. Signals arrive at any instant of time, outputs when ready

- 3. Synchronous Sequential Circuit Signals arrive at discrete instants of time, outputs at next time step
 - Has Clock
- 4. Asynchronous Sequential Circuit Signals arrive at any instant of time, outputs when ready
 - May not have Clock

P1 Review

Summary

- **Specification**
- 2. Formulation e.g. using state table or state diagram
- 3. State Assignment: assign binary codes to states
- entries
- **Output Equation Determination:** Derive output equations from the output entries 5.
- **Optimisation** 6.
- 7. Technology Mapping
- 8. Verification

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state

- Modelling State Transitions; TC & OC
- 2. Formulation: State Table Output)
- 3. State Assignment Sequential indexing (0...0000, 0...0001, 0...0010, 0...0011, ...); One-Hot states

2. Formulation: State Diagram (Mealy) & State Machine Diagram (Moore)

Equivalent truth table: Input (Present State, Input); Output (Next State,

(0...0001, 0...0010, 0...0100, 0...1000, ...);

Flip-Flop Input Equation Determination 4.

- Determine next state inputs by considering flip-flop types e.g. D flip-flop easiest
- Derive input equations from next-state entries in **State Table** e.g. using Sum-of-Minterms

Output Equation Determination 5.

Derive output equations from the output entries in State Table

- Flip-Flop Input Equation Determination 4.
- **Output Equation Determination** 5.

$D_1 D_0$ for next state
$S_1 S_0$ for present

Present State S_1S_0

A 00

- B 01
- C 10
- D 11

Next	State $D_1 D_0$	Out	out Z
X = 0	X = 1	X = 0	X = 1
00 A	B 01	0	0
00 A	C 10	0	0
11 D	C 10	0	0
00 A	B 01	0	1

- **Flip-Flop Input Equation Determination** 4.
- **Output Equation Determination** 5.
- $D_1 D_0$ for next state S_1S_0 for present

 $D_1 = F_1(X, S_1, S_0) = \Sigma m(2, 5, 6)$ $D_0 = F_0(X, S_1, S_0) = \Sigma m(2, 4, 7)$

 $Z = m_{7}$

X	S_1S_0	$D_1 D_0$	Ζ
0	00	00	0
0	01	00	0
0	10	11	0
0	11	00	0
1	00	01	0
1	01	10	0
1	10	10	0
1	11	01	1

- 6. **Optimisation** Unused states can be implemented as don't care conditions
- In this example $m_0, m_1, m_{12}, m_{13}, m_{14}, m_{15}$ are unused, and can all be *don't care conditions*

$$D_A = \Sigma m(5,7,8,9,11)$$

$$D_B = \Sigma m(3,4)$$

$$D_C = \Sigma m(2,4,6,8,10)$$

$$d = \Sigma m(0,1,12,13,14,15)$$

Present State		State	Input	Next State		
Α	В	С	X	Α	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

Optimisation 6.

Unused states can be implemented as don't care conditions

 $D_A = \Sigma m(5,7,8,9,11)$ $D_B = \Sigma m(3,4)$ $D_C = \Sigma m(2,4,6,8,10)$ $d = \Sigma m(0, 1, 12, 13, 14, 15)$

BCD Decoder State Machine Diagram Exercise

Specification

- Input: 1-bit X
- Output: 10-bits, $D_0 \dots D_9$. D_i indicates current number is *i*. All 0 for invalid or incomplete input. Outputs every 4 CLKs.
- Output:

0; 0; 0; $D_1 = 1$; 0; 0; 0; $D_4 = 1$; 0; 0; 0; 0;

P3 Full Exercises

All 8 Steps examples are too long for in class tutorials

Textbook Examples in 5.7 (v4); 4.6 (v5)

