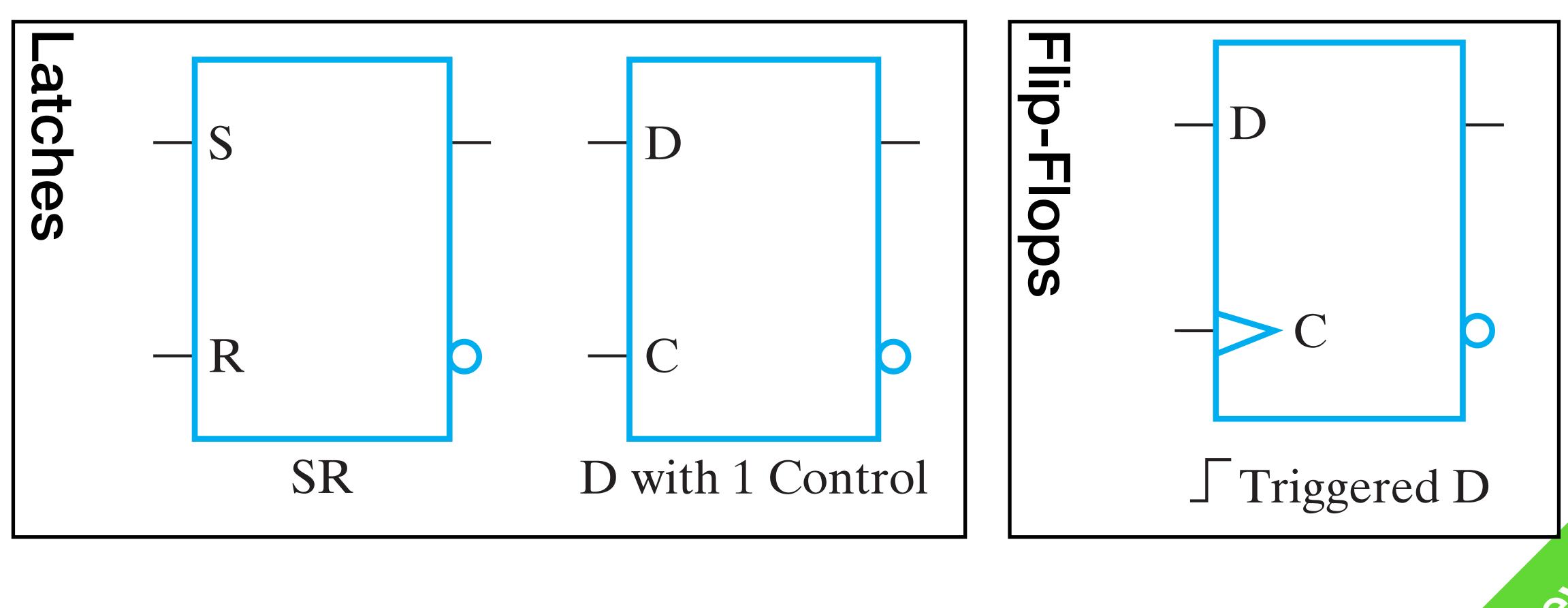
CSCI 150 Introduction to Digital and Computer System Design Lecture 4: Sequential Circuit V

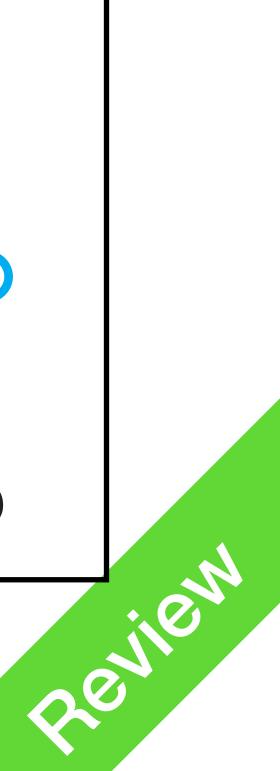
Jetic Gū 2020 Fall Semester (S3)

Overview

- Focus: Basic Information Retaining Blocks
- Architecture: Sequential Circuit
- Textbook v4: Ch5 5.5, 5.6; v5: Ch4 4.5
- Core Ideas:
 - 1. Sequential Circuit Design Procedures
 - 2. Other Flip-Flop Types



Latches and Flip-Flops



Systematic Design Procedures **P**0 Review Sequential Circuits

- **Specification**
- 2. Formulation e.g. using state table or state diagram
- 3. State Assignment: assign binary codes to states
- entries
- **Output Equation Determination:** Derive output equations from the output entries 5.
- **Optimisation** 6.
- 7. Technology Mapping
- 8. Verification

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state

Sequential Circuit Design II

State Assignment; Input Equation Determination; Output Equation Determination

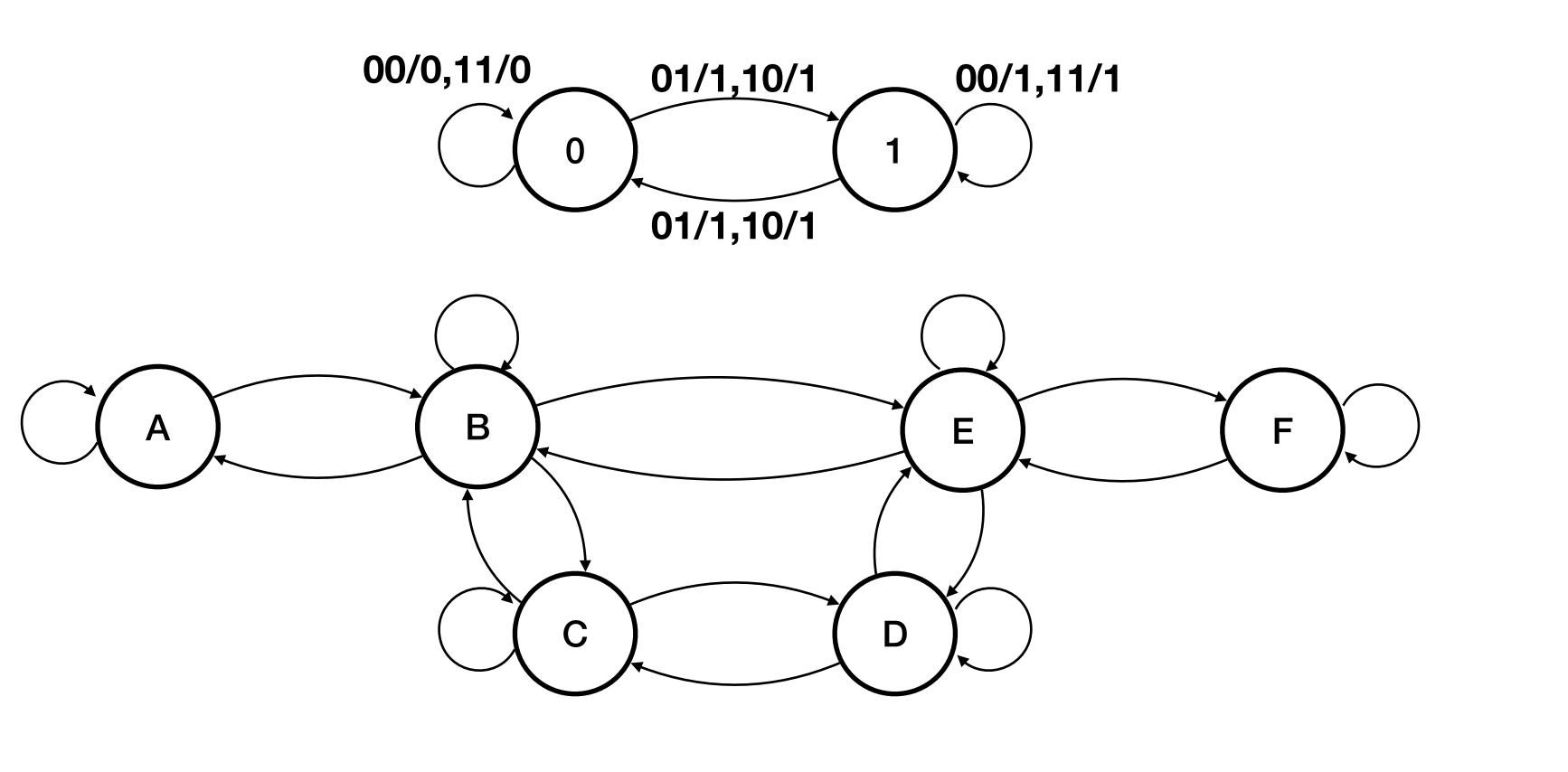
Systematic Design Procedures **P1** Design Sequential Circuits

- **Specification**
- 2. Formulation e.g. using state table or state diagram
- 3. State Assignment: assign binary codes to states
- entries
- **Output Equation Determination:** Derive output equations from the output entries 5.
- **Optimisation** 6.
- 7. Technology Mapping
- 8. Verification

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state

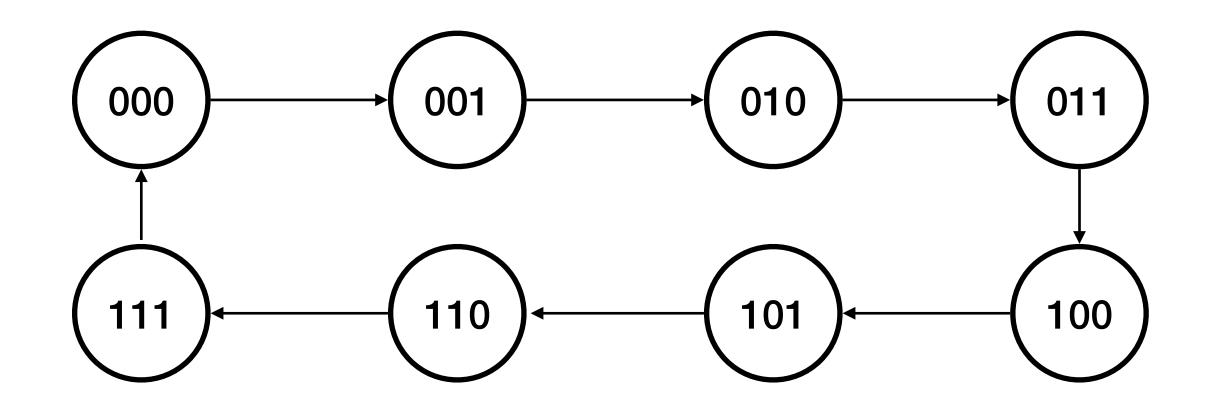
2. Formulation

 Sometimes it is more intuitive to describe state transitions then defining the states

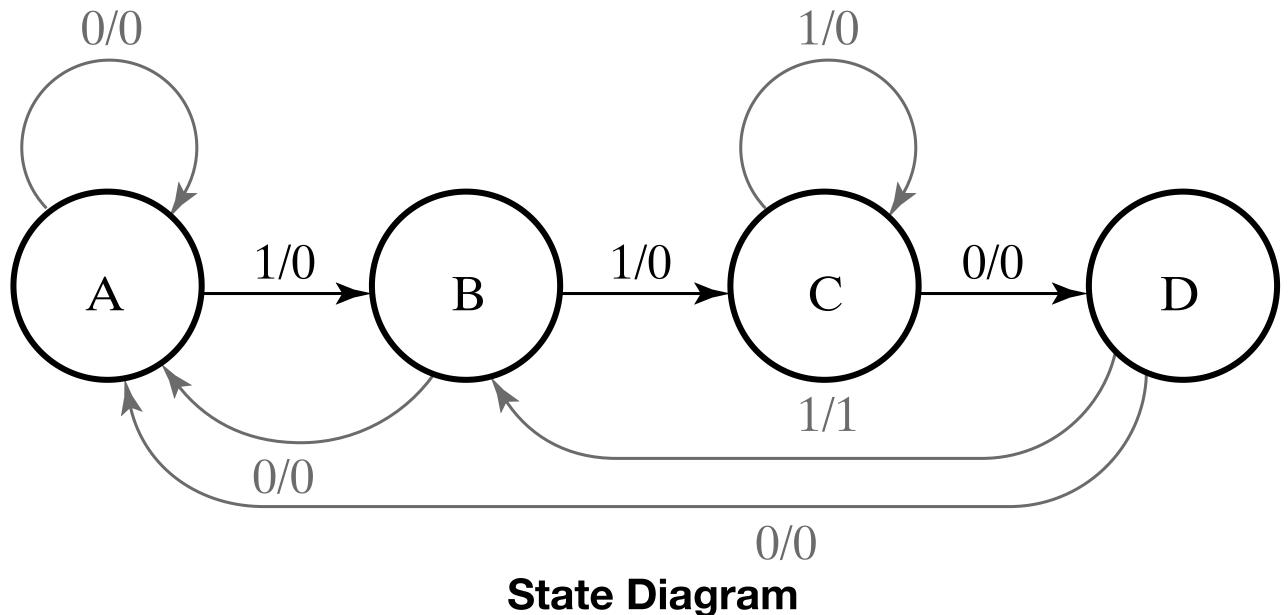


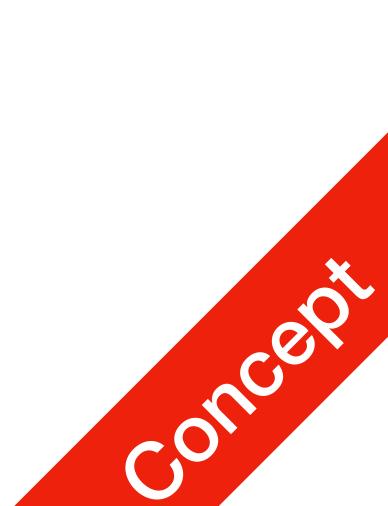
2. Formulation

• Incrementer: perform +1 operation every CLK on 3-bit



- Used when states are quite complicated and expressed using variables during Formulation
- Define the **binary values** for each state \bullet





- Used when states are quite complicated and expressed using variables during Formulation
- Define the **binary values** for each state

Present State	Next State		Output Z	
	X = 0	X = 1	X = 0	X = 1
A	A	B	0	0
B	A	C	0	0
С	D	C	0	0
D	A	B	0	1
	Sta	ite Table		I

• Method 1: sequential assignment $A = 0, B = 1, C = 2, D = 3, \dots$

P1

Design

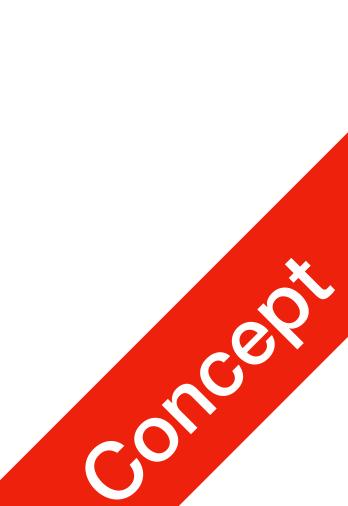
Droopt	Next	State	Output Z	
Present State	X = 0	X = 1	X = 0	X = 1
A 00	00 A	B 01	0	0
B 01	00 A	C 10	0	0
C 10	11 D	C 10	0	0
D 11	00 A	B 01	0	1

State Table

• Method 2: one hot $A = (0001)_2, B = (0010)_2, C = (0100)_2, D = (1000)_2$

	Next State		Output Z	
Present State	X = 0	X = 1	X = 0	X = 1
A 0001	0001 A	B 0010	0	0
B 0010	0001 A	C 0100	0	0
C 0100	1000 D	C 0100	0	0
D 1000	0001 A	B 0010	0	1

State Table



- Are these the only methods?
 - No, there's tons
- Are these methods equivalent?
- For this course, we don't require you to come up with the best state assignment solution

No, they each lead to completely different solutions, with different costs

- Are we using all of the combinations?
 - No. Some states are not designed to be reachable
 - Could also be used in the future for extensions

4. Flip-Flop Input Expressions **P1** 5. Output Expressions Design

- Express all Flip-Flops using input variables
- Express all outputs using variables and Flip-Flop outputs

$D_1 D_0$ for next state	
$S_1 S_0$ for present	Pres

sent State S_1S_0

- A **00**
- B **01**
- C 10
- D 11

Next	State $D_1 D_0$	Outp	Output Z		
X = 0	X = 1	X = 0	X = 1		
00 A	B 01	0	0		
00 A	C 10	0	0		
11 D	C 10	0	0		
00 A	B 01	0	1		

4. Flip-Flop Input Expressions **P1** 5. Output Expressions Design

- Express all Flip-Flops using input variables
- Express all outputs using variables and Flip-Flop outputs

 $D_1 D_0$ for next state S_1S_0 for present

 $D_1 = F_1(X, S_1, S_0) = \Sigma m(2, 5, 6)$ $D_0 = F_0(X, S_1, S_0) = \Sigma m(2, 4, 7)$

 $Z = m_{7}$

X	$S_1 S_0$	$D_1 D_0$	Ζ
0	00	00	0
0	01	00	0
0	10	11	0
0	11	00	0
1	00	01	0
1	01	10	0
1	10	10	0
1	11	01	1

6. Optimisation with Unused States

• Unused states can be implemented as don't care conditions

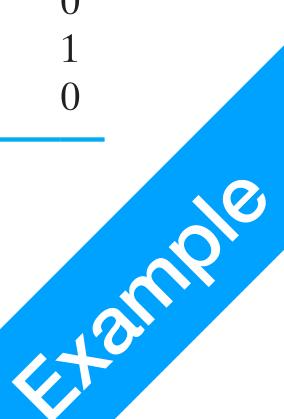
P1

Design

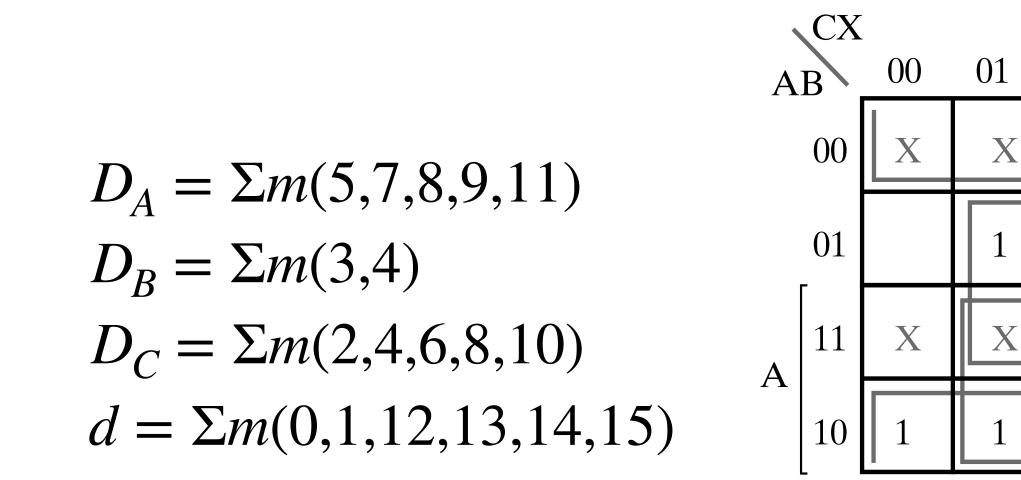
• In this example $m_0, m_1, m_{12}, m_{13}, m_{14}, m_{15}$ are unused, and can all be don't care conditions

$$D_A = \Sigma m(5,7,8,9,11)$$
$$D_B = \Sigma m(3,4)$$
$$D_C = \Sigma m(2,4,6,8,10)$$
$$d = \Sigma m(0,1,12,13,14,15)$$

Pre	sent S	State	Input	Nex	xt Sta	ate
Α	В	С	X	Α	В	С
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	1	0	0
0	1	1	0	0	0	1
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	1	0	0

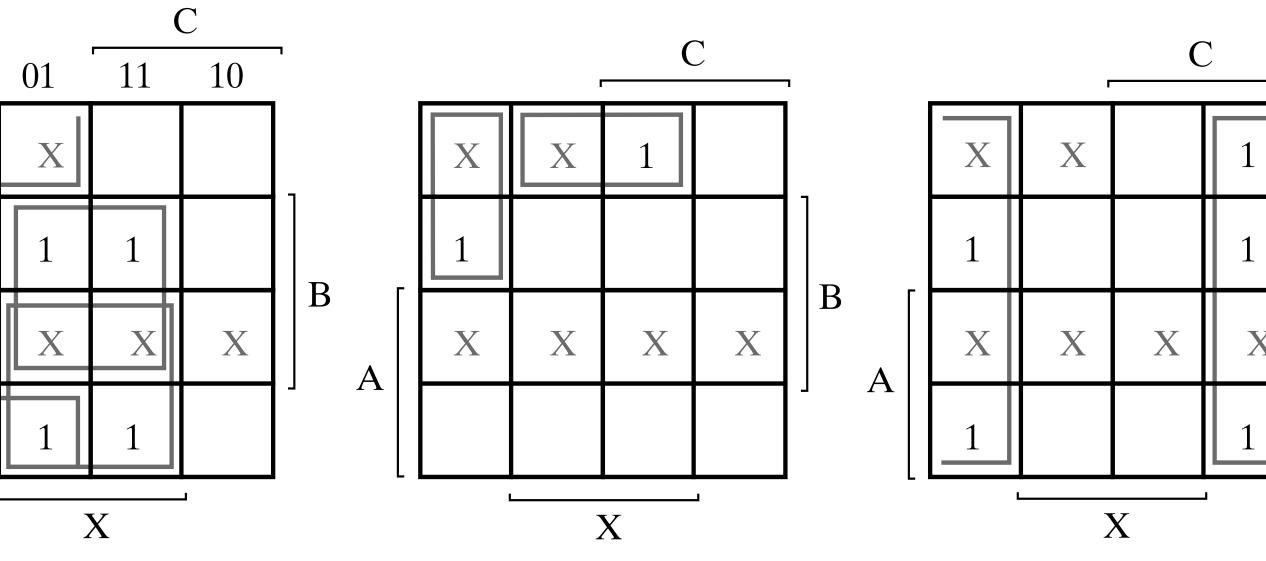


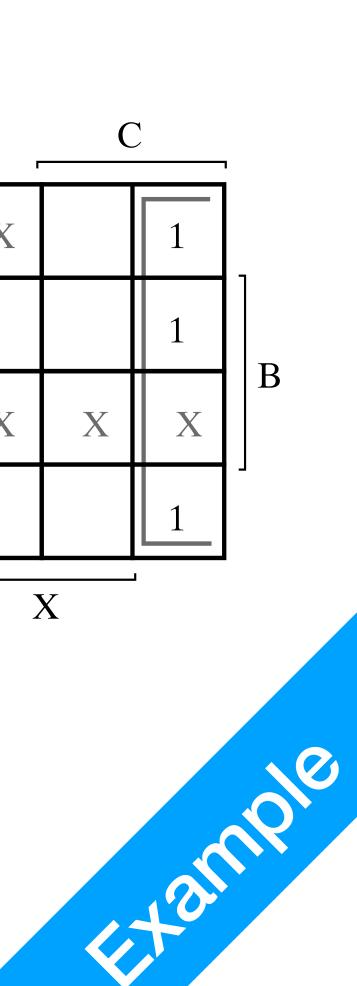
6. Optimisation with Unused States



P1

Design





Systematic Design Procedures **P1** Design Sequential Circuits

- **Specification**
- 2. Formulation e.g. using state table or state diagram
- 3. State Assignment: assign binary codes to states
- entries
- **Output Equation Determination:** Derive output equations from the output entries 5.
- **Optimisation** 6.
- 7. Technology Mapping
- 8. Verification

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state

Summary

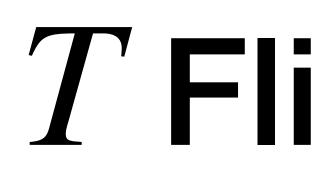
- 3. State Assignment: assign binary codes to states
- 4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state entries
- 5. Output Equation Determination: Derive output equations from the output entries
- **Optimisation with unused states** 6.

P2 Other Flip-Flop

Some Other Flip-Flop Types JK Flip-Flop; T Flip-Flop

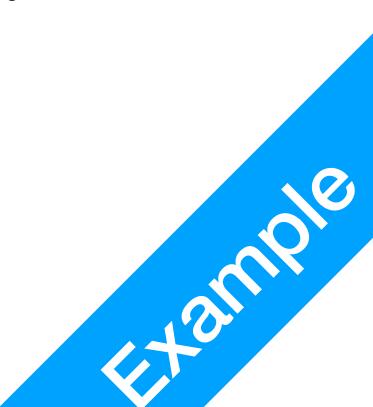
Conditional Inverter

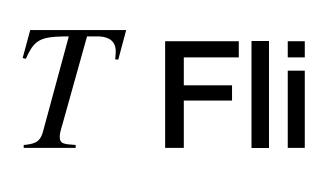
T	Q(t + 1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement



- Follow 8 step design principles
 - Write down the boolean expression
 - Draw the circuit diagram

]	Γ	Q(t + 1)	Operation
()	Q(t)	No change
]		$\overline{Q}(t)$	Complement

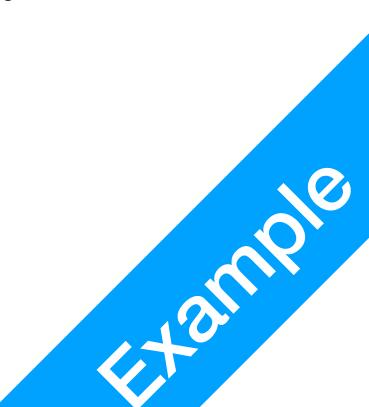




- 3. State Assignment
- 4. Flip-Flop Input Equation

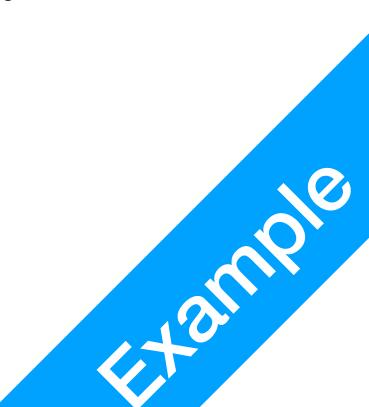
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

T	Q(t + 1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

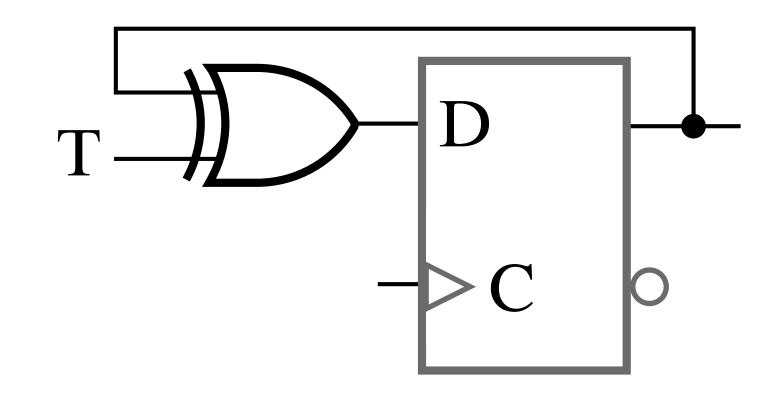


- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t+1) = Q \oplus T$
- 5. Output Equation Determination
- Optimisation 6.
- Technology Mapping 7.

T	Q(t + 1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement



- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t+1) = Q \oplus T$
- 5. Output Equation Determination
- Optimisation 6.
- Technology Mapping 7.



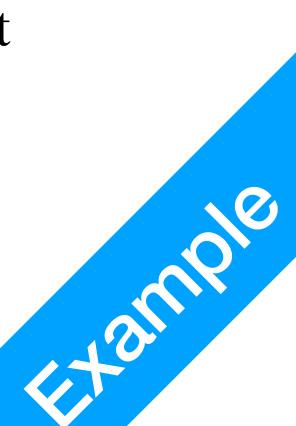
T	Q(t + 1)	Operation
0	Q(t)	No change
1	$\overline{Q}(t)$	Complement

• Similar to *SR* Master-Slave Flip-Flop with 11 input inverting internal value

Operation J Q(t+1)K 0 Q(t)No change 0 0 0 Reset 1 1 0 Set $\overline{Q}(t)$ 1 Complement 1

- Follow 8 step design principles
 - Write down the boolean expression
 - Draw the circuit diagram

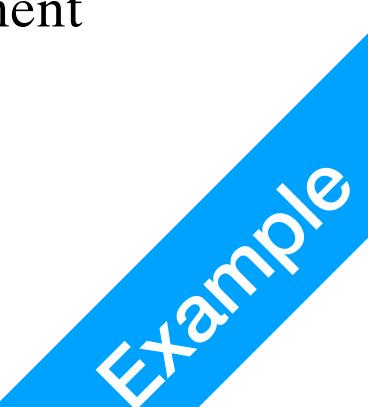
J	K	Q(t + 1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement



- 3. State Assignment
- 4. Flip-Flop Input Equation

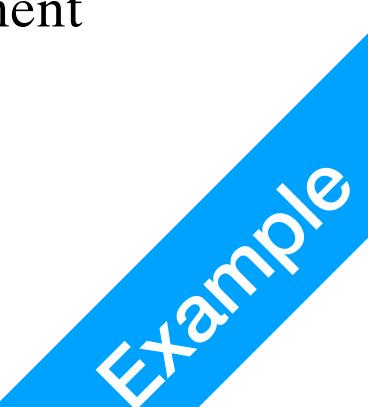
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

J	K	Q(t + 1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

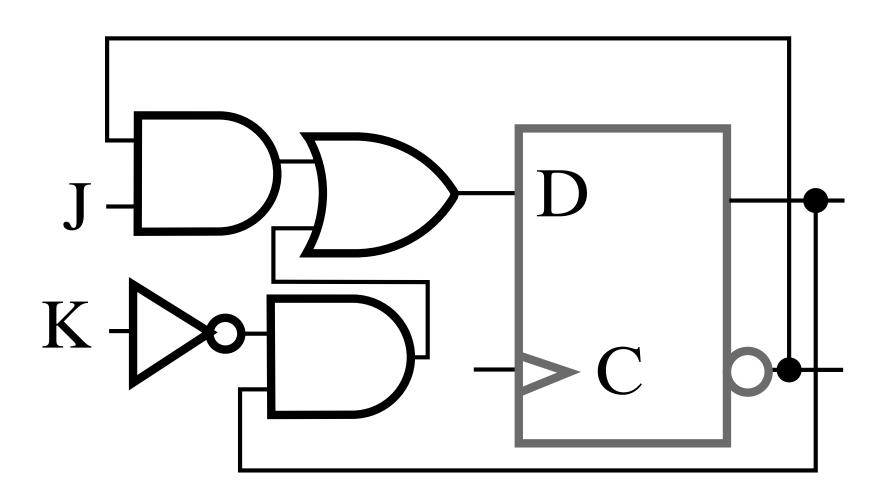


- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t+1) = J \cdot \overline{Q} + \overline{K} \cdot Q$
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping

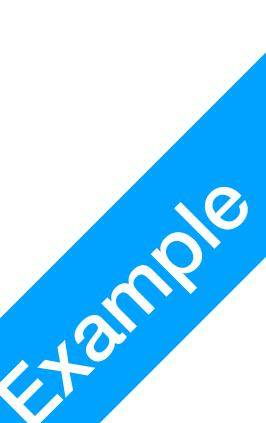
J	K	Q(t + 1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement



- 3. State Assignment
- 4. Flip-Flop Input Equation $Q(t+1) = J \cdot \overline{Q} + \overline{K} \cdot Q$
- 5. Output Equation Determination
- 6. Optimisation
- 7. Technology Mapping



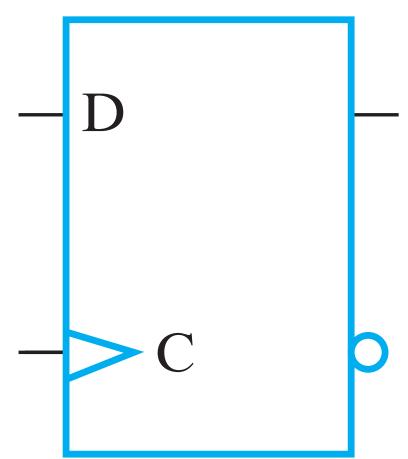
J	K	Q(t + 1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	$\overline{Q}(t)$	Complement

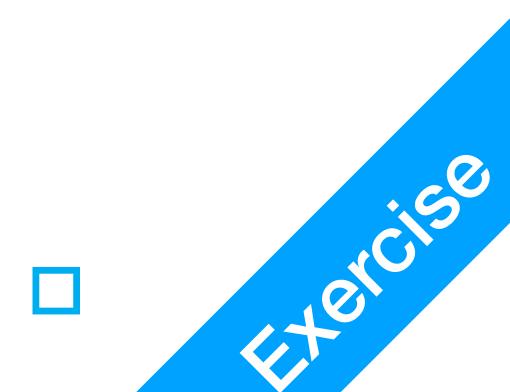


LogicWorks Exercise

P2 Other Flip-Flop

- Implement *D* flip flop using *D* latch and *SR* latch Save it as a component in your library
- Implement circuit $D_S = X \oplus Y \oplus S$, where D_S is a D flip flop
- Implement $D_A = \overline{X}A + XY$, $D_B = \overline{X}B + XA$, Z = XB
- Draw the state table and diagram, and verify your table with LogicWorks





Implementation

- Implement *JK* Flip-Flop
- Implement *T* Flip-Flop

• Is there any other way to implement? What if you cannot use D Flip-Flop?

