CSCI 101 Connecting with Computer Science Artificial Intelligence II

Jetic Gū 2020 Fall Semester (S3)

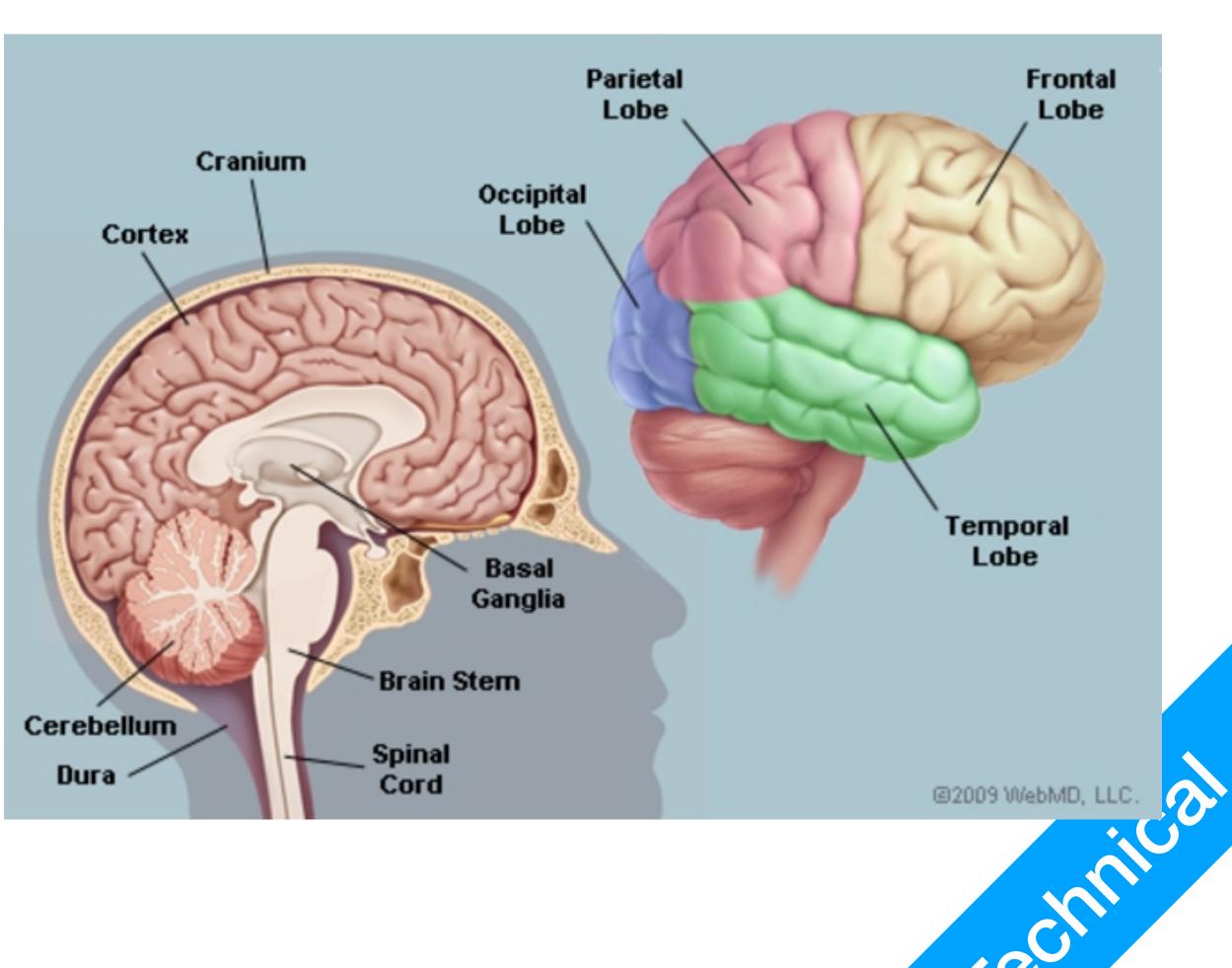
Overview

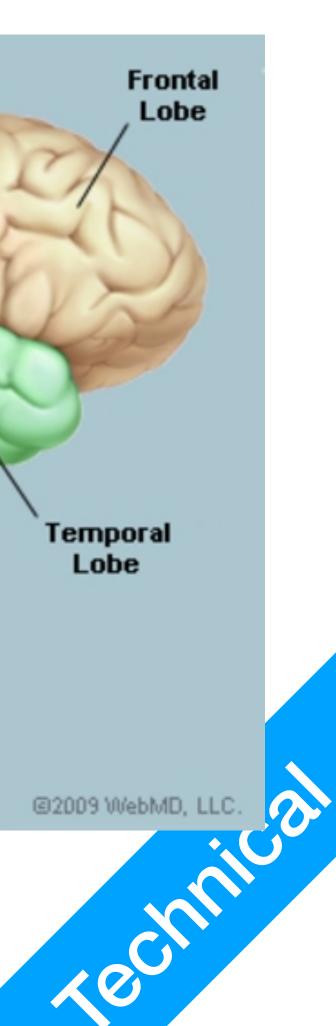
- Focus: Artificial Intelligence
- Readings: -
- Core Ideas:
 - 1. How the Mind Works
 - 2. Neural Network Introduction
 - 3. Limitations and Applications

How the Mind Works

Brain! Brain! I love BRAINSSS!

- The brain is part of the central nervous system
 - Brain
 - Main Cortex
 - Cerebellum lacksquare
 - Brain Stem
 - etc...
 - Spinal Cord



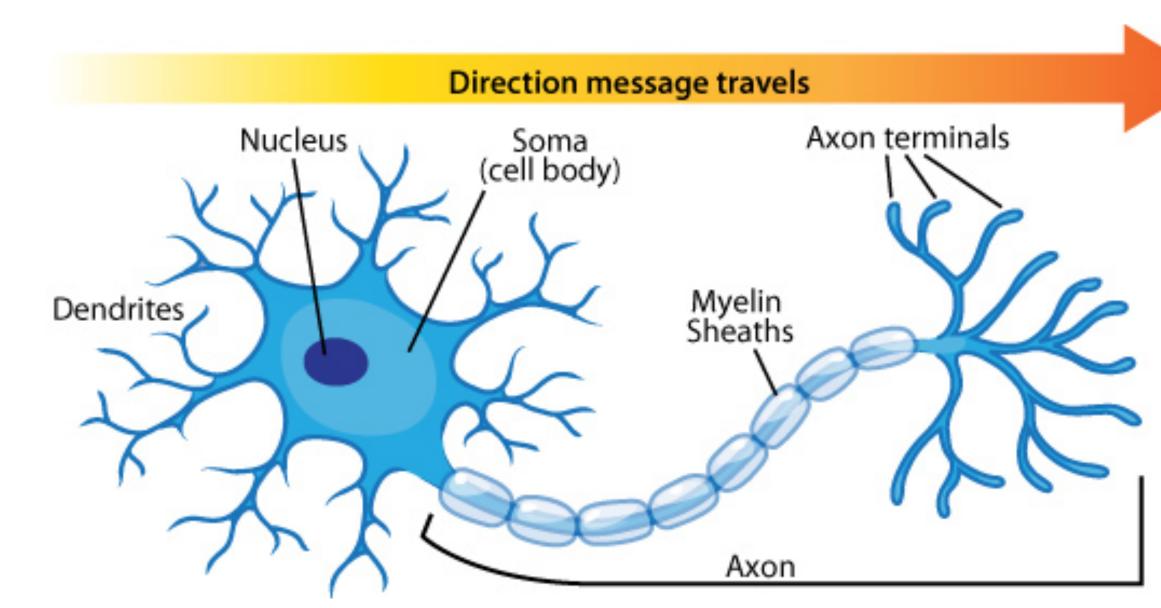


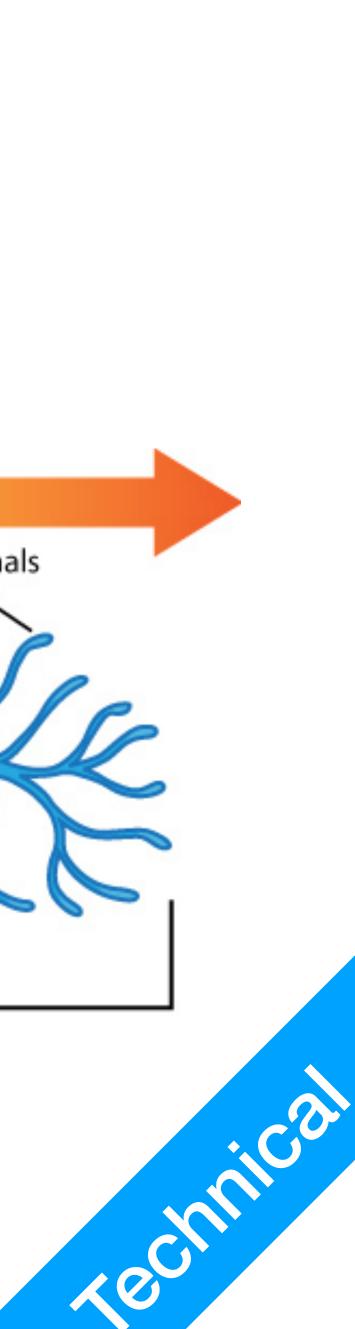
- Each region of the brain consists of massive neurones interconnected with each other (thousands of different types)
- Neurone
 - **Soma** (Cell body) + **Nucleus** (Core)
 - Dendrites
 - Axons

connected to the dendrites of other neurones

- Each region of the brain consists of massive neurones interconnected with each other (thousands of different types)
- Neurone
 - **Soma** (Cell body) + **Nucleus** (Core)
 - **Dendrites**
 - Axons

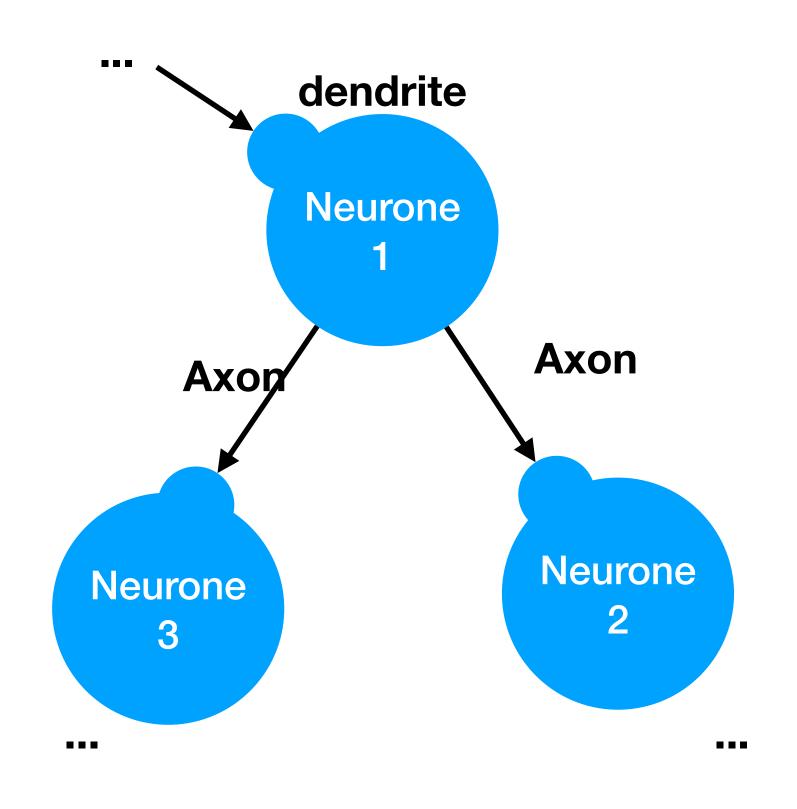
connected to the dendrites of other neurones





- Each region of the brain consists of massive neurones interconnected with each other (thousands of different types)
- Neurone
 - **Soma** (Cell body) + **Nucleus** (Core)
 - **Dendrites**
 - Axons

connected to the dendrites of other neurones



- Information Passage
 - Sensory information gets passed to the brain through certain **neurotransmitter ions**
 - Upon receiving certain **ions**
 - Neurones generate Electric Potential
 - Chooses to pass/not pass **ions** to other connected neurones
 - Certain ions travel to our **muscle** then cause contractions, which brings about our motor functions

General Anatomy

Neural control SMA Motor behaviour Spinal cord **Musculoskeletal mechanics**

Intro. to Artificial Neural Network Multi-layer Perceptrons

• We talked about basic **Perceptron** models

P2

NN

• Features/Evidence X and Weights W

• Predictions:
$$P(L = l_j | X) = \sigma(\Sigma_i x_i v_j)$$

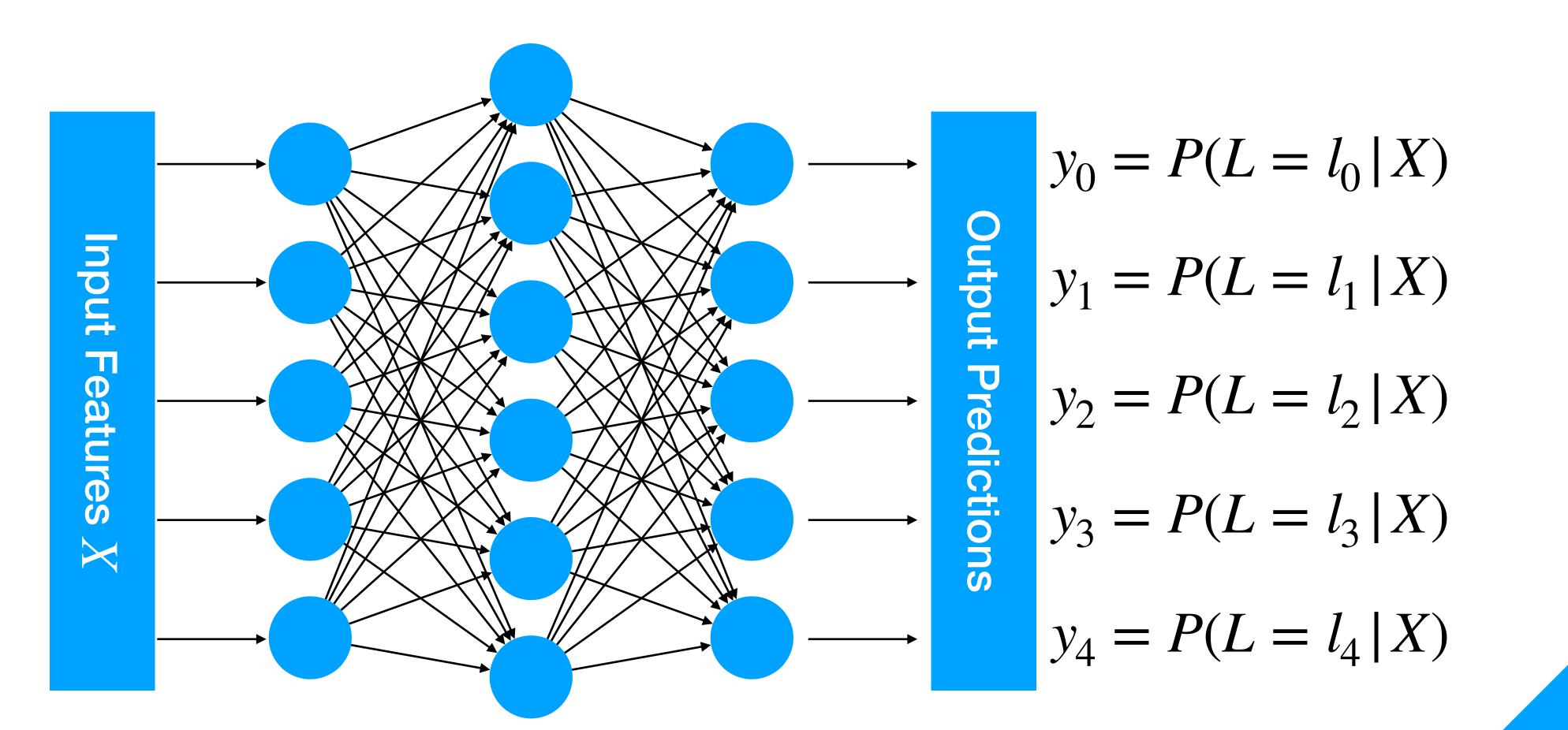
- A single **perceptron** unit **is like** a single **neurone**
 - Information from dendrites: $x_i \in X$
 - Pass on to its axons: $P(L = l_i | X) =$ to be taken as inputs to other neurones!

 w_{ii}), where σ is the logistic function

$$= \sigma(\Sigma_i x_i w_{ij})$$

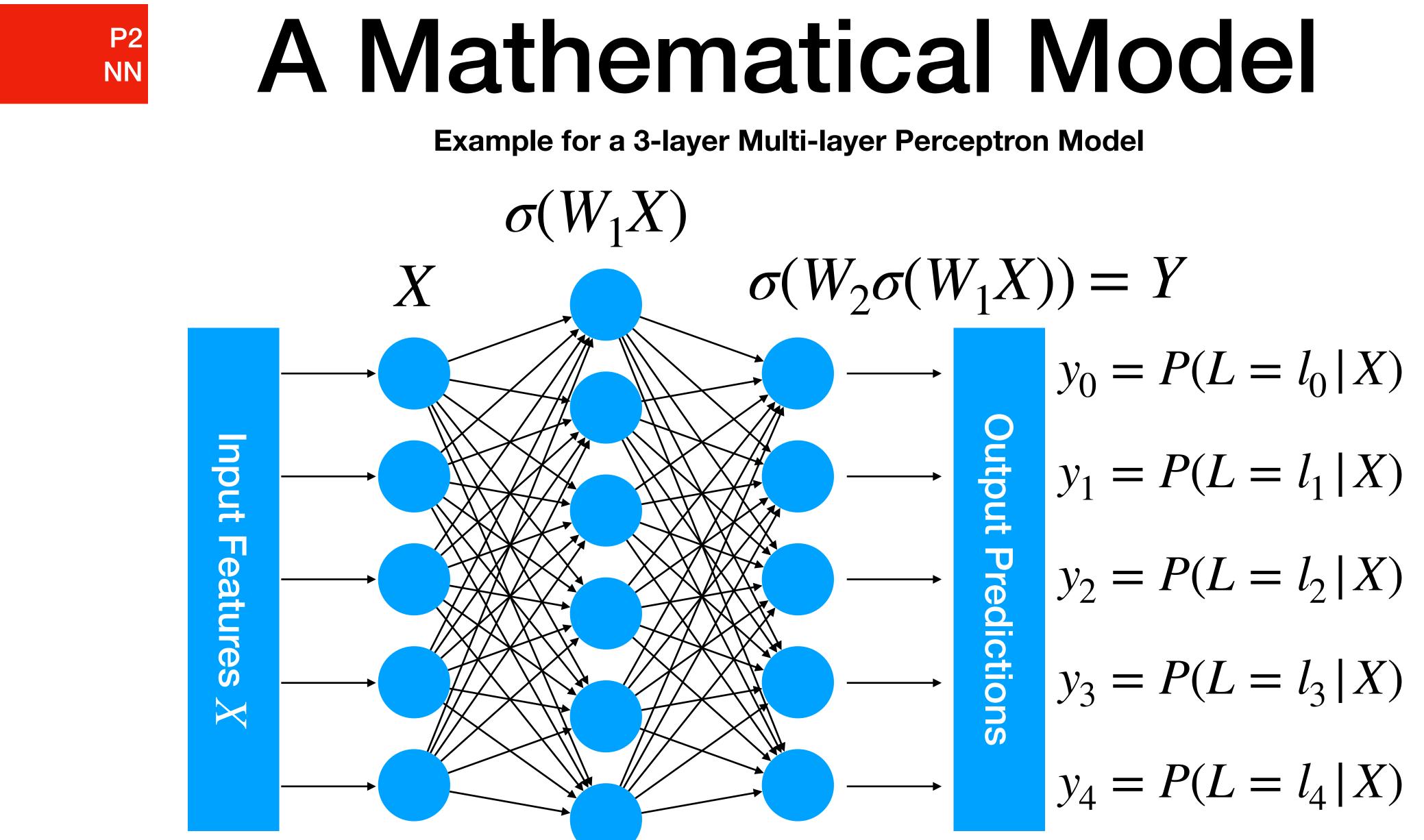
1. Rosenblatt, 1961. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms

P2 NN



1. Rosenblatt, 1961. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms

Example for a 3-layer Multi-layer Perceptron Model



1. Rosenblatt, 1961. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms

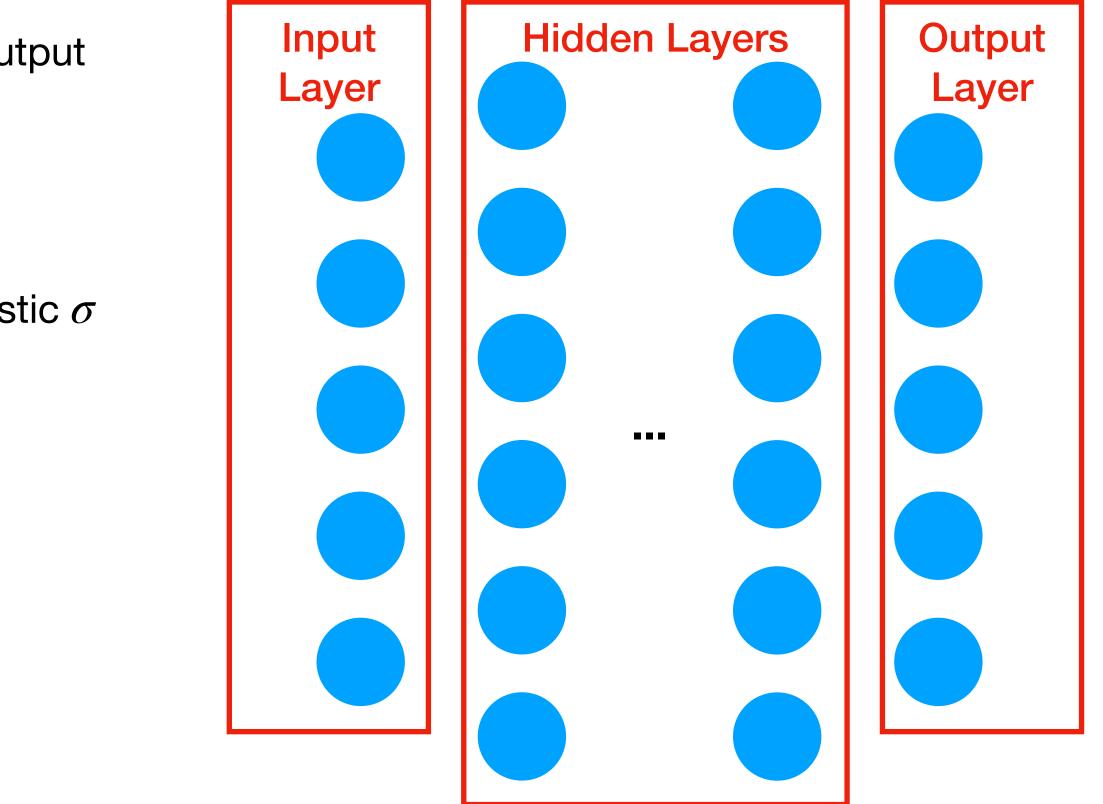
• Multi-layer Perceptron

P2

NN

- Can have **more layers** between input layer and output layer
- Can have more nodes in each layer
- Can use different activation functions than Logistic σ
- Can have incomplete connections
- Can have backward connections (recurrent neural network)
- Can have forward connections (highway connections)

•



For MLP (Multi-layer perceptron)¹

P2

NN

- Back-propagation Algorithm

1. Rosenblatt, 1961. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms

How can you learn the weights?

For recurrent neural network: back-propagation-through-time (BPTT)

What have we accomplished with MLP?

Recognising handwritten digits

P2

NN

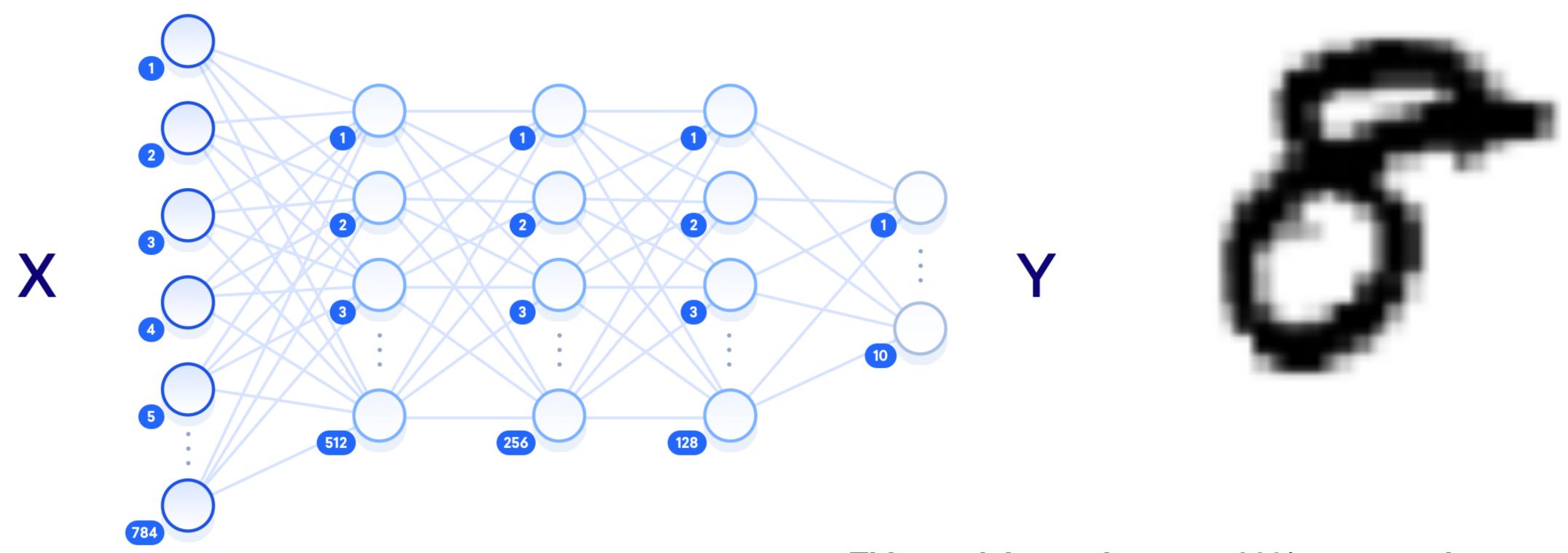
- Input: 28 x 28 grey-scaled values, one for each pixel This is our $X \in \mathbb{R}^{28 \times 28} = \mathbb{R}^{784}$
- Output: 1 x 10 decimal values This is our $(y_0, y_1, \dots, y_9) Y \in [0, 1]^{10}, Y \in [0, 1]^{10}$, $y_i = P(\text{Label} = i | X)$

What have we accomplished with MLP?

• Recognising handwritten digits

P2

NN



1. <u>https://www.digitalocean.com/community/tutorials/how-to-build-a-neural-network-to-recognize-handwritten-digits-with-tensorflow</u>

• This model can give you >90% accuracy!

P2 NN

What have we accomplished with MLP?

- Primitive autonomous cars
 - Recognise lanes
 - Control steering wheel
 - 1980s: NAVLAB

Progress

- We've had a lot of advancement in NN research, with better models than MLP
- We've discovered a lot of useful applications of NN, such as image processing and NLP
- We've learn a lot about how to create NNs with more and more layers (Deep Learning)
- Problems
 - Learning algorithm: still **basic** back-propagation
 - Artificial neurones: barely any progress in the past 20 years
 - More layers of NN does not improve performance that much anymore
 - We are currently at the bottleneck!

