CSCI 150 Introduction to Digital and Computer System Design Midterm Review I

Jetic Gū 2020 Fall Semester (S3)

Overview

- Focus: Review
- Architecture: Combinational Logic Circuit
- Textbook v4: Ch1-4; v5: Ch1-3
- Core Ideas:
 - Digital Information Representation (Lecture 1) 1.
 - Combinational Logic Circuits (Lecture 2) 2.
 - 3. Combinational Functional Blocks, Arithmetic Blocks (Lecture 3)

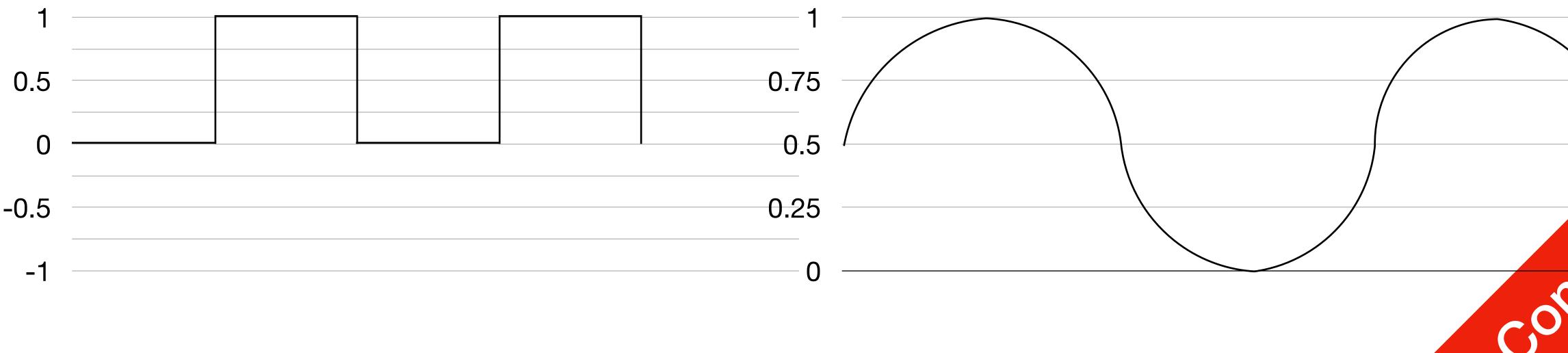
P1 Digital Rep.

Lecture 1: Digital Information Representation

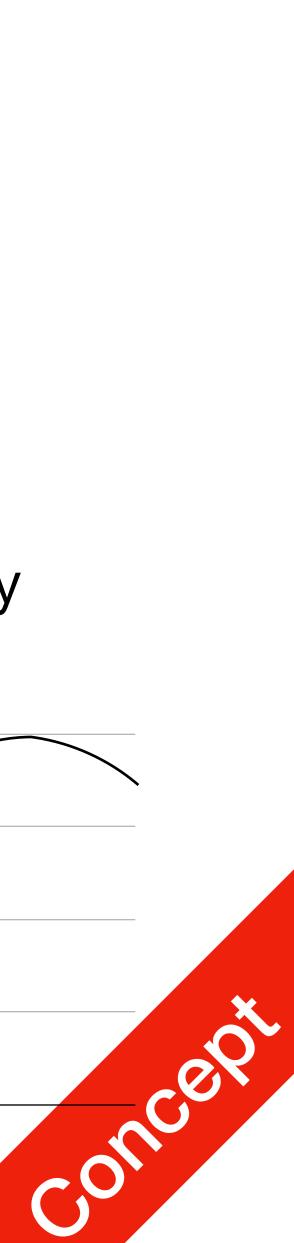
Analog vs Digital circuits; Modern computer architectures; Embedded systems; Number Systems; Conversions; Arithmetic Operations; Alphanumeric Codes

Digital Rep. Analog vs Digital circuits

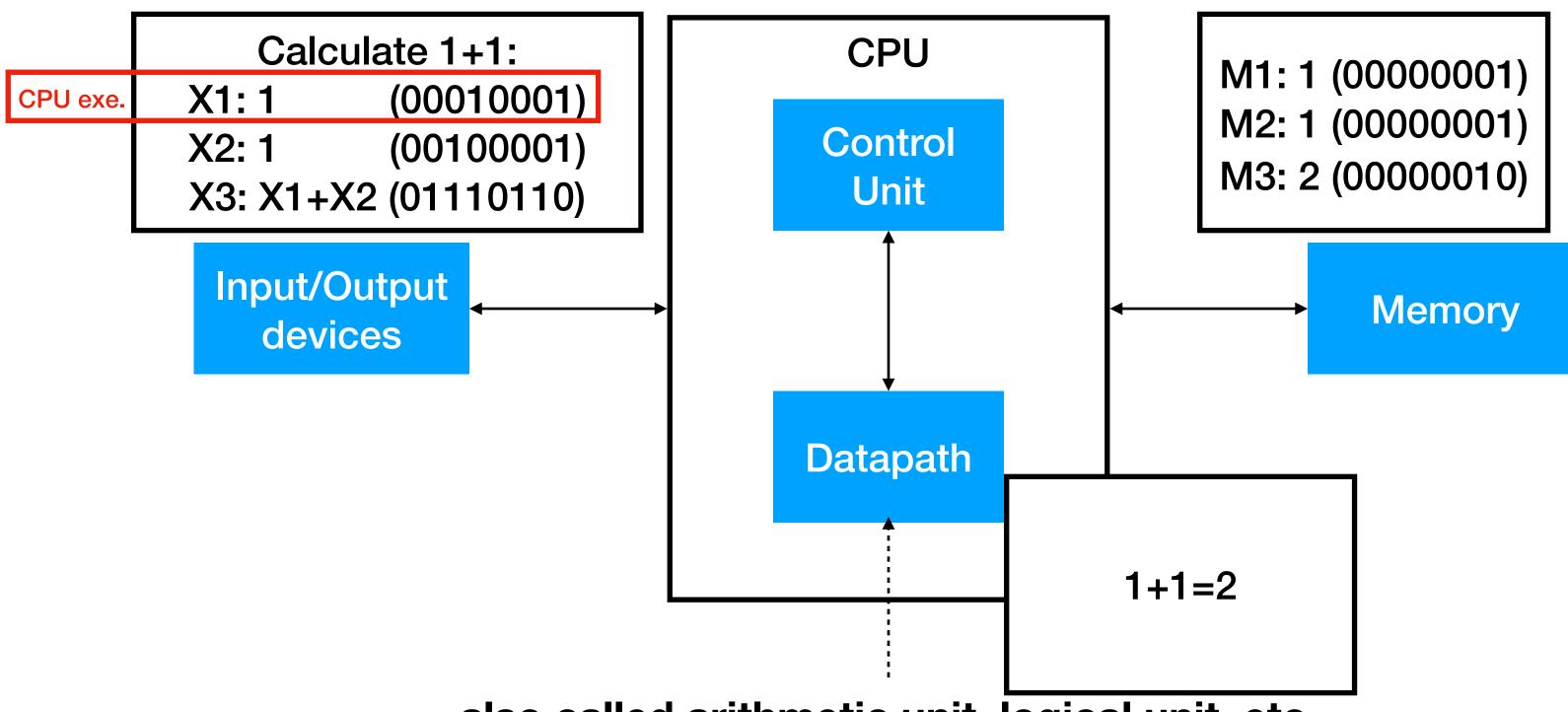
- Digital Circuits
 - Process digital signals
 - Current/Voltage represent discrete logical and numeric values



- Analog Circuits
 - Process analog signals
 - Current/Voltage vary continuously to represent information

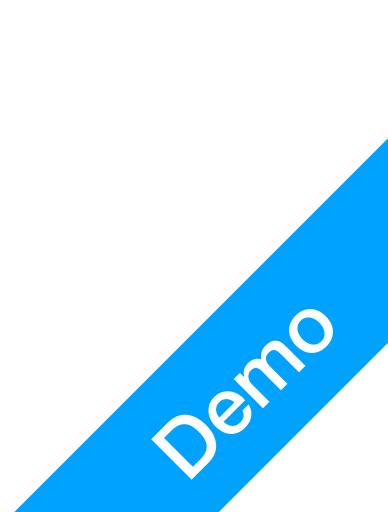


Digital Rep. Von Neumann Architecture A very rough example



also called arithmetic unit, logical unit, etc.

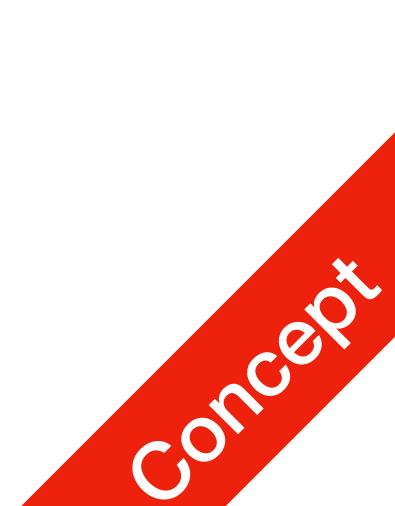
1. Von Neumann Architecture



- Input/Output devices
 - Interaction (Mouth, hands and feet, eyes, etc.)
- CPU + Memory
 - Processing information, thinking (Brain, short-term memory)
- Storage?
 - Part of I/O devices (Books, long-term memory)

Computer

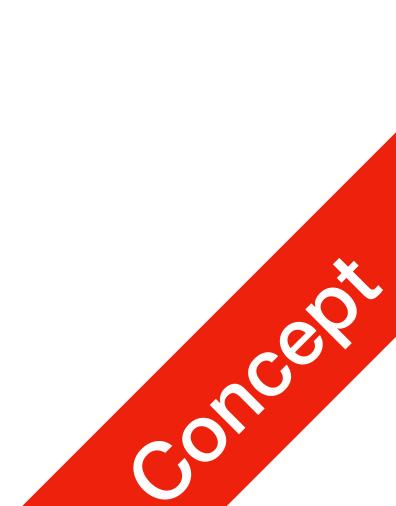
What's it like compared to a human?



P1.1 Digital Rep.

Embedded Systems

- Similar to computers: processes information
- Difference
 - Function is usually simpler, and very very specific
 - Not programmable



Decimal System

P1.2 Number Systems

- Numbers as strings of digits, each ranging from 0-9
- The decimal system is of base(radix) 10

7 2 4 0 5 2 1 0 -1-2

Decimal System

P1.2 Number Systems

7 2 4 0 5 2 1 0 -1-2 $= 7 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0} + 0 \times 10^{-1} + 5 \times 10^{-2}$

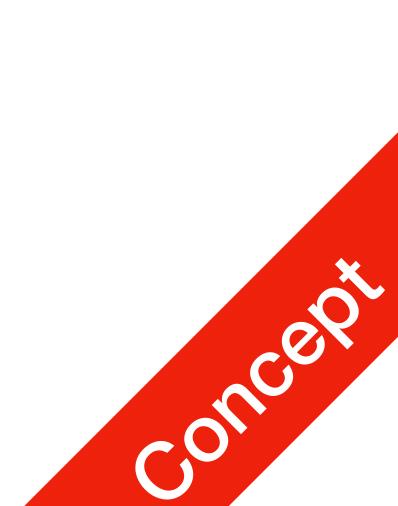
- Numbers as strings of digits, each ranging from 0-9
- The decimal system is of base(radix) 10

P1.2 Number Systems

Numbers of base N

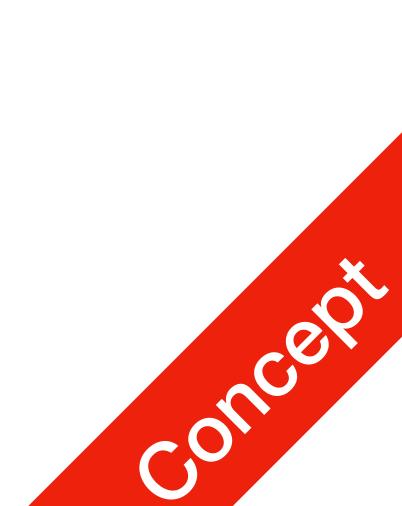
- Default base: 10
- When there are numbers represented in different bases, attach base
 - Decimal: $754.05 \rightarrow (754.05)_{10}$
 - e.g. Base 5: $(432.1)_5 = ?$

$= 4 \times 5^{2} + 3 \times 5^{1} + 2 \times 5^{0} + 1 \times 5^{-1} = (117.2)_{10}$

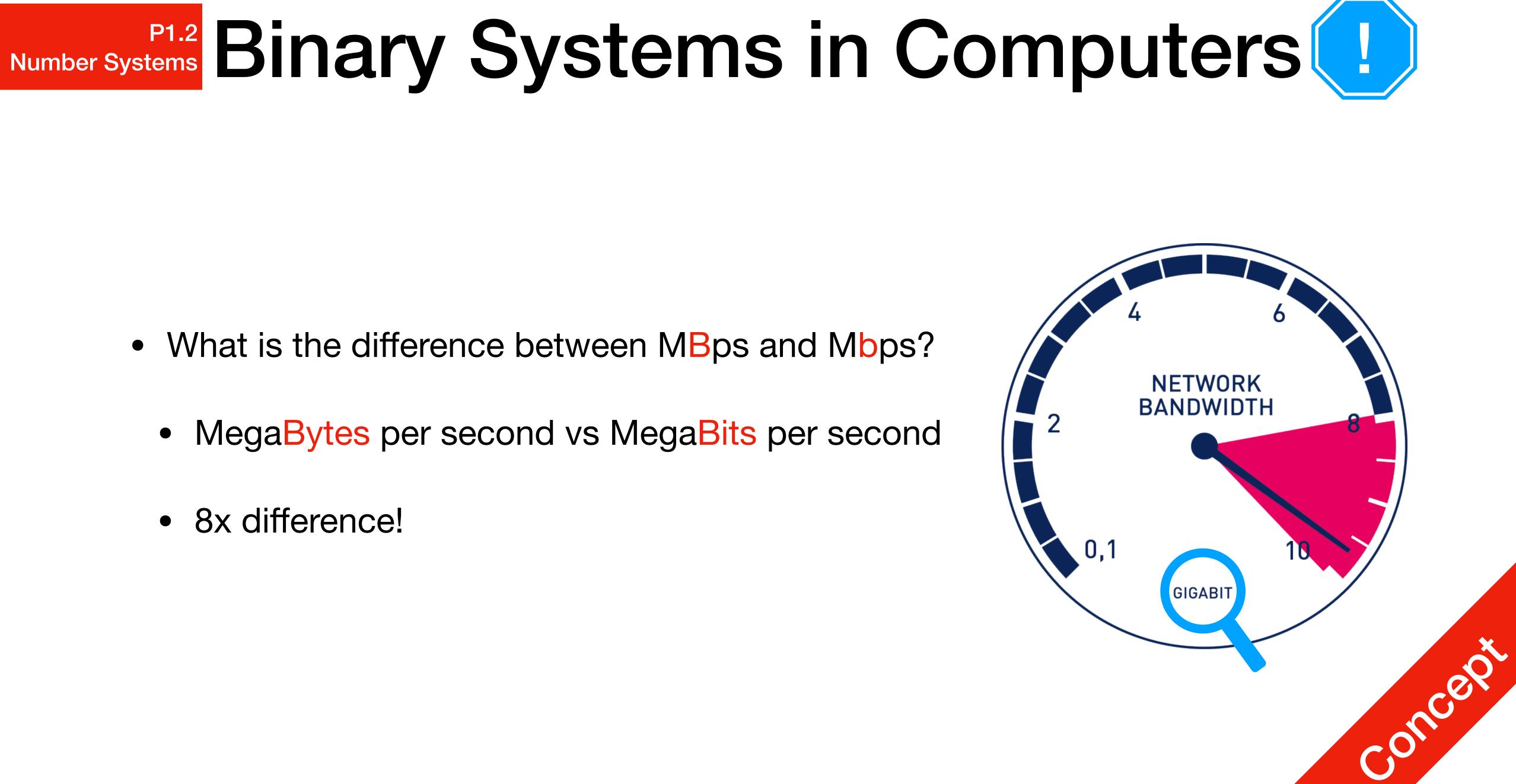


Number Systems Binary Systems in Computers

- Every 8bit is called a Byte
- $1,024 = 2^{10}$ is called K (Kilo)
- $1,024 \ge 1,024 = 2^{20}$ is called M (Mega)
- $1,024 \ge 1,024 \ge 1,024 = 2^{40}$ is called G (Giga)
- Tera, Peta, Exa, Zetta, Yotta



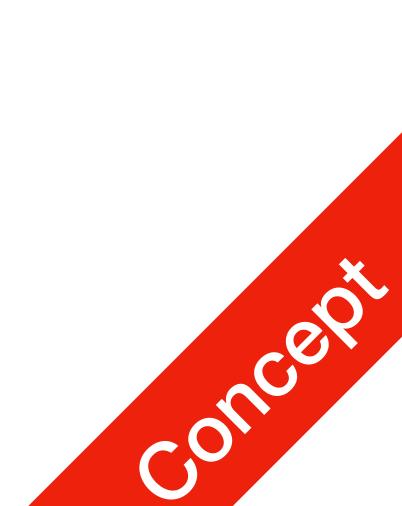
- What is the difference between MBps and Mbps?
 - MegaBytes per second vs MegaBits per second
 - 8x difference!



P1.2 Number Systems

Octal and Hexadecimal Systems

- Octal: base 8
 - digits: 0-7
- Hexadecimal: base 16
 - digits: 0-9, A-F (10-15)

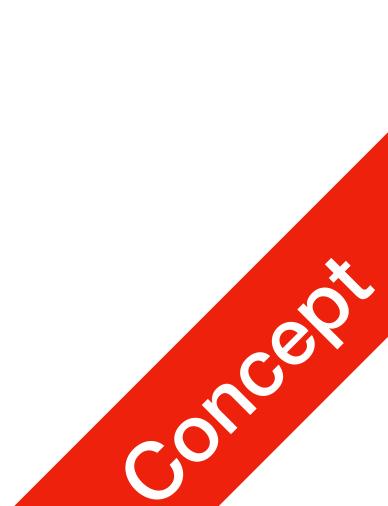


P1.2 Number Systems

10	9	8	7	6	5	4	3	2	1
1024	512	256	128	64	32	16	8	4	2

- Binary-to-Octal: 3bits per octal digit Hexadecimal: 4bits per hexa digit Decimal: use the chart
- Decimal-to-Binary: use the chart Oct/Hex: do binary first

Conversions



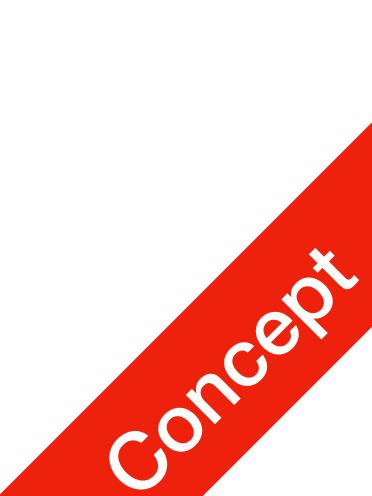
P1.3 Arithmetics

• The same as decimal (mostly)

Arithmetics

00100101+0011-00110101()()1()

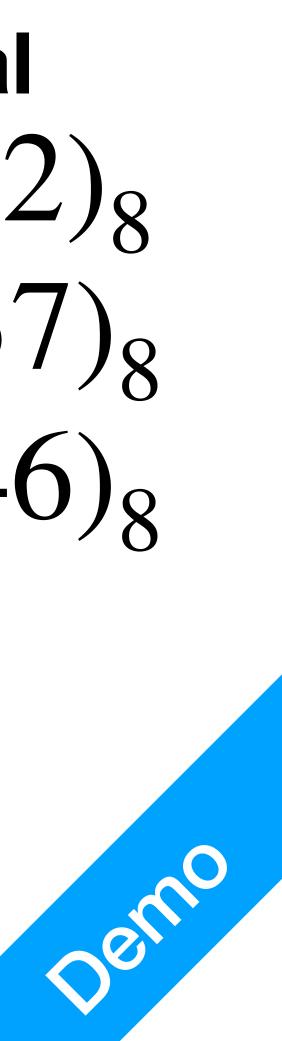
Example (binary)



P1.3 Arithmetics

Arithmetics **OCTAL** Multiplication Octal $5 \times 2 = 12$ $5 \times 6 + 1 = 37$ $5 \times 7 + 3 = 46$

Decimal $10 = (12)_8$ $31 = (37)_8$ $38 = (46)_8$



Representations Signed & Unsigned Integers

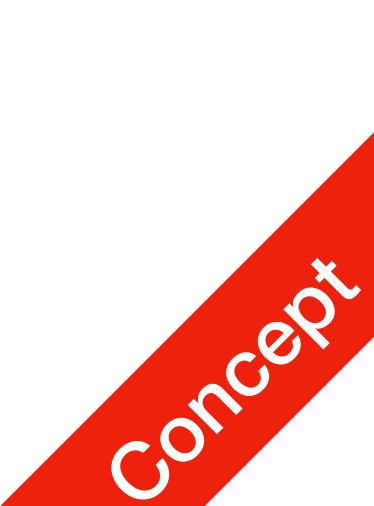
- Unsigned 8bit:
 - (11111111)₂ = 255
- Signed 8bit (only in digital circuits):
 - 127 -> '01111111'
 - -127 -> '111111111'

First digit:

- 0 for positive
- 1 for negative

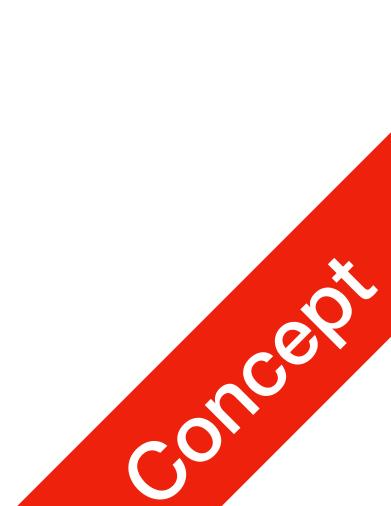
100011111

(binary, 8bit, signed)



Representations Signed & Unsigned Integers

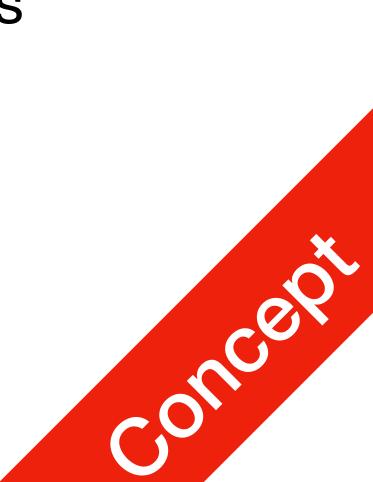
- Unsigned 8bit integer: 0 255
 - Signed 8bit integer: -128 127
- Unsigned 32bit integer: 0 4,294,967,295
 - Signed 32bit integer: -2,147,483,648 2,147,483,647
- Unless otherwise specified, treat as unsigned



P1.4 Representations

Binary Coded Decimal

- Decimal numbers, each digit represented in 4bit binary, but separately
- $185 = (0001 \ 1000 \ 0101)_{BCD} = (10111001)_2$
- Used in places where using decimals directly is more convenient, such as digital watches etc.



- American Standard Code for Information Interchange
- Assign each character with a 8bit binary code (e.g. '0'-'9', 'A'-'Z', 'a'-'z')
- The first bit is always 0

ASCI

Parity Code

- For error detection in data communication
 - e.g. resulting from packet loss or other forms of interference
- One parity bit for n-bits
 - An extra even parity bit: whether the number of 1s is not even
 - An extra odd parity: whether the number of 1s is not odd
 - Can be placed in any fixed position
 - Does it always work?

P1.4 Representations

Original 7bits

with Even parity

1000001

1010100

Parity Code

with Odd parity

<u>0</u>1000001

11000001

<u>11010100</u>

<u>0</u>1010100

P1.5 Lect 1 Summary

Circuits

- Circuits
 - Digital and Analog
- Integrated systems
 - Von Neumann computers
 - Embedded systems

P1.5 Lect 1 Summary

Number Systems

- Number systems of base N
- Binary systems
- Octal and Hexadecimal systems
- Arithmetics

P1.5 Lect 1 Summary

Number Systems in DC

- Bit, Byte, Representation ranges
- Signed and Unsigned Binary Integers
- BCD, ASCII, UTF8
- Parity bit

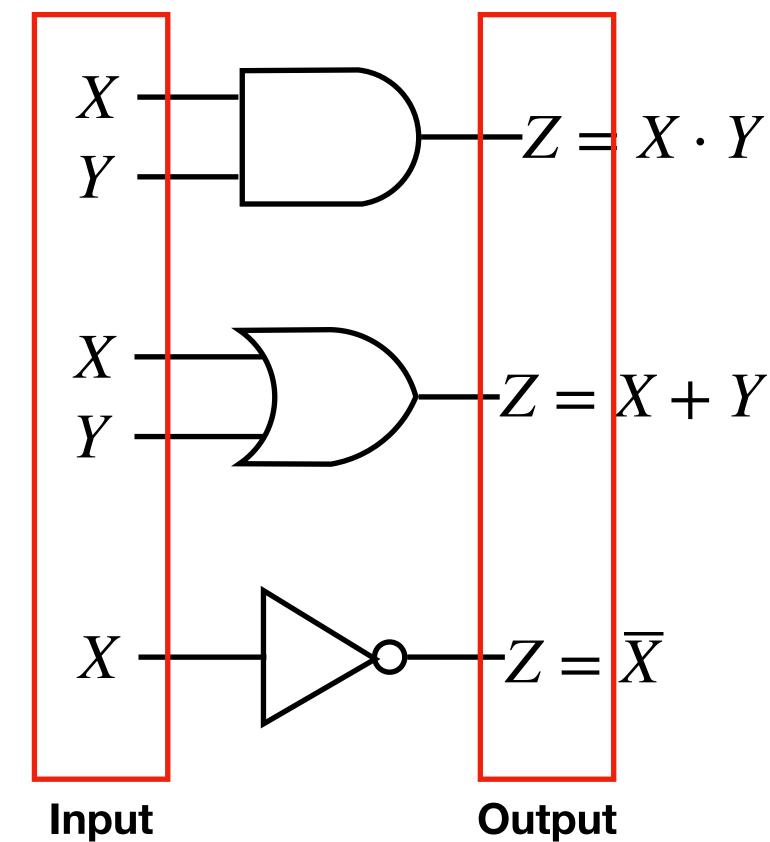
Lect 1 Summary Digital to Analog Conversion

- Frequency: number of cycles per second
- Sample rate: number of samples per unit time
- Bitrate: number of bits per second

Lecture 2: Combinational Logic Circuits

Logic Gates; Boolean Algebra; Minterm/Maxterm; K-Map; Some Other Gate Types

P2.1 **Logic Gates**



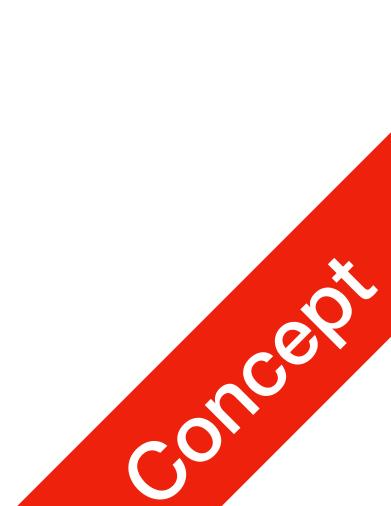
AND Gate

OR Gate

NOT Gate

Input

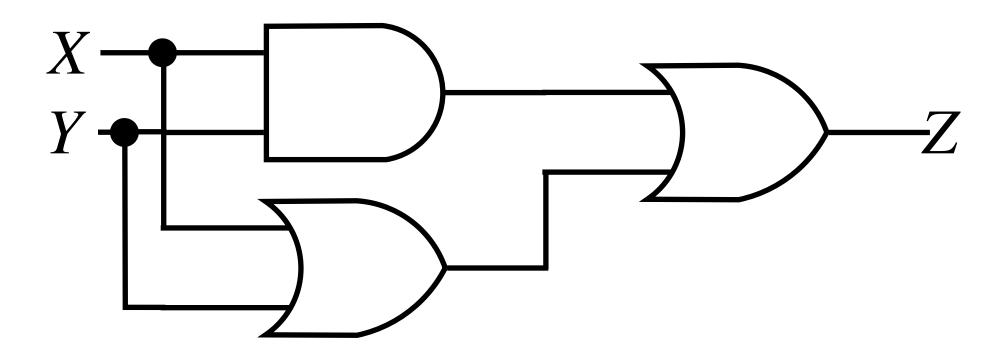
First 3 Gates

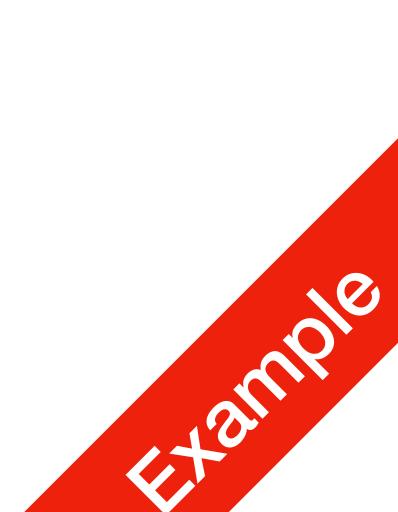


Truth Table

Truth Table

X	Y	$Z = (X \cdot Y) + (X + Y)$
0	0	0
0	1	1
1	0	1
1	1	1





- Boolean Algebra solving
 - **Identify** rules **applicable** to the expression
 - Apply rules that can help you simplify the expression
 - **Simplification**: reducing the number of variables and operators in an expression without changing it's truth table values
 - **Atomic element:** an element that can't have the number of its variables and operators reduced any further

Basic Identities

- 1. X + 0 = X2. $X \cdot 1 = X$ 3. X + 1 = 14. $X \cdot 0 = 0$
- 5. X + X = X

Basic Identities

- 6. $X \cdot X = X$ 7. $X + \overline{X} = 1$
- 8. $X \cdot \overline{X} = 0$
- 9. $\overline{\overline{X}} = X$

- Communicative
 - 10.X + Y = Y + X
 - 11.XY = YX
- Associative

12.X + (Y + Z) = (X + Y) + Z13.X(YZ) = (XY)Z

Basic Identities

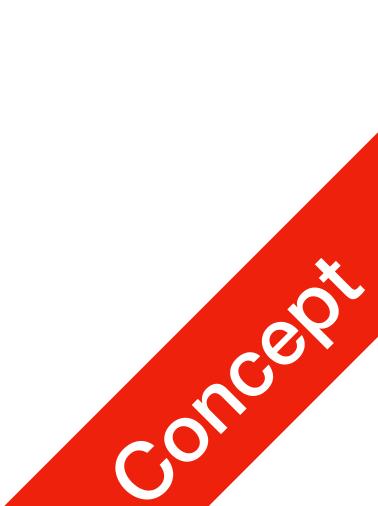
• Distributive

14.X(Y+Z) = XY + XZ

- 15.X + (YZ) = (X + Y)(X + Z)
- DeMorgan's

16.
$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$



A. X + XY = X

B. $XY + X\overline{Y} = X$

C. $X + \overline{X}Y = X + Y$

Basic Identities

D. X(X + Y) = X

- $\mathsf{E.} \ (X+Y)(X+\overline{Y}) = X$
- $F. \quad X(\overline{X} + Y) = XY$



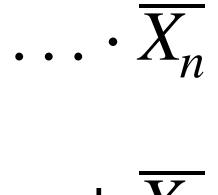
Complementation

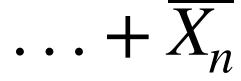
- Apply DeMorgan's Rule

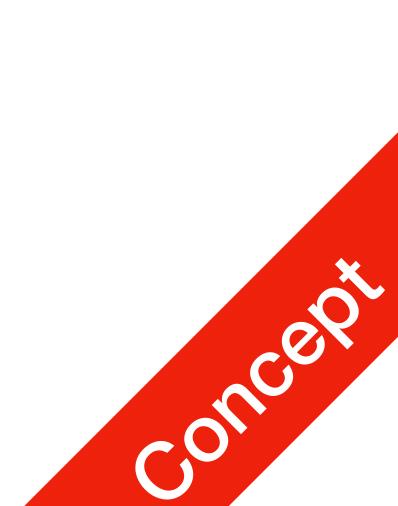
16.
$$\overline{X_1 + X_2 + \ldots + X_n} = \overline{X_1} \cdot \overline{X_2} \cdot$$

17. $\overline{X_1 \cdot X_2 \cdot \ldots \cdot X_n} = \overline{X_1} + \overline{X_2} + \overline{X_$

• \overline{F} : complement (invert) representation for a function F, obtained from an interchange of 1s to 0s and 0s to 1s for the values of F in the truth table







Difficulty: Simple

Simplify the following expressions

•
$$\overline{X} \cdot \overline{Y} + XYZ + \overline{X}Y$$

• $X + Y(Z + \overline{X + Z})$

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

- $\overline{W}X(\overline{Z} + \overline{Y}Z) + X(W + \overline{W}YZ)$
- $(AB + \overline{AB})(\overline{CD} + CD) + AC$

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

•
$$\overline{A} \cdot \overline{C} + \overline{A}BC + \overline{B}C$$

• $\overline{A + B + C} \cdot \overline{ABC}$

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

- $AB\overline{C} + AC$
- $\overline{A} \cdot \overline{B}D + \overline{A} \cdot \overline{C}D + BD$

Algebraic Manipulation

Difficulty: HARDCORE

Prove the identity of each of the following Boolean equations

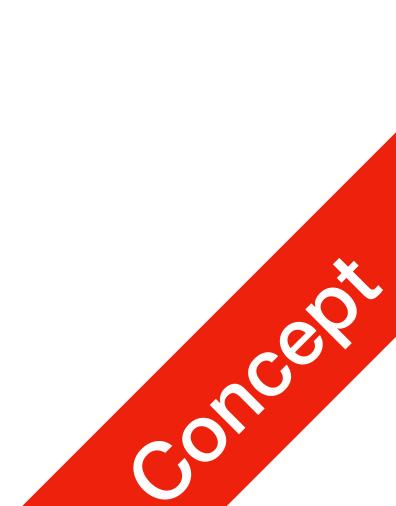
- $AB\overline{C} + B\overline{C} \cdot \overline{D} + BC + \overline{C}D = B + \overline{C}D$
- $WY + \overline{W}Y\overline{Z} + WXZ + \overline{W}X\overline{Y} = WY + \overline{W}X\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z$
- $A\overline{D} + \overline{AB} + \overline{CD} + \overline{BC} = (\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + C + D)$

Algebraic Manipulation

P2.3 **Standard Forms**

Standard Forms

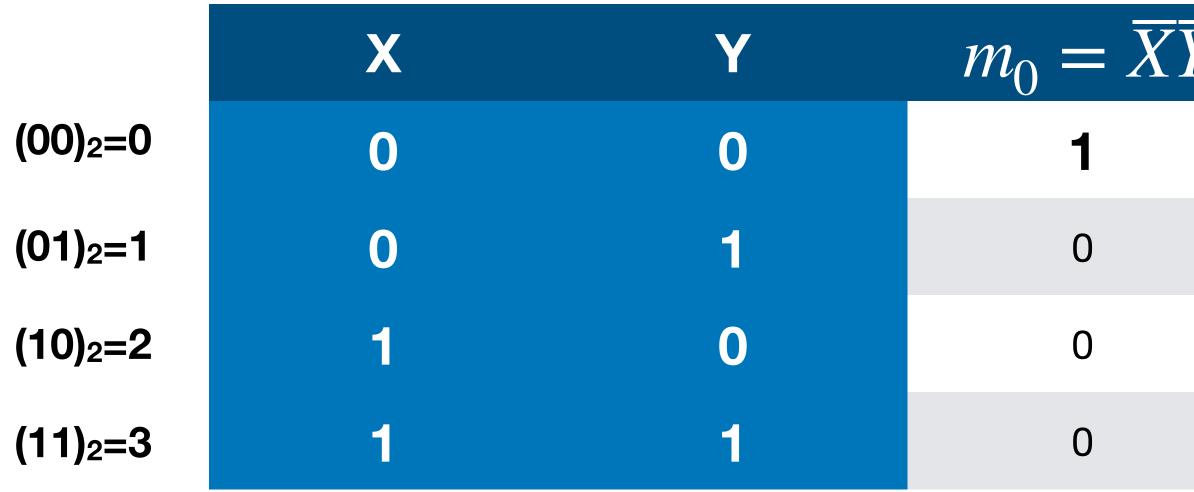
- Equivalent expressions can be written in a variety of ways **Standard forms**: typical such ways that incorporates some **unique** characteristics -> simplify the implementation of these designs
 - **Product terms** (AND terms): e.g. *XYZ* Literals with inverts connected through only AND operators
 - Sum terms (OR terms): e.g. $X + \overline{Y} + Z$ Literals with inverts connected through only OR operators



P2.3 Standard Forms

Minterms and Maxterms

 Minterm Product term; Contains all variabl table



Product term; Contains all variables; Has only one Positive row in the truth

\overline{Y}	$m_1 = \overline{X}Y$	$m_2 = X\overline{Y}$	$m_3 = XY$
	0	0	0
	1	0	0
	0	1	0
	0	0	1

P2.3 Standard Forms

Minterms and Maxterms

- Maxterm table
- $M_0 = X +$ Y X 0 0 0 0 \mathbf{O}

Sum term; Contains all variables; Has only one Negative row in the truth $M_i = \overline{m_i}$

$FY M_1 = X +$	\overline{Y} $M_2 = \overline{X} + Y$	$M_3 = \overline{X} + \overline{Y}$
1	1	1
0	1	1
1	0	1
1	1	0

Minterms and Maxterms

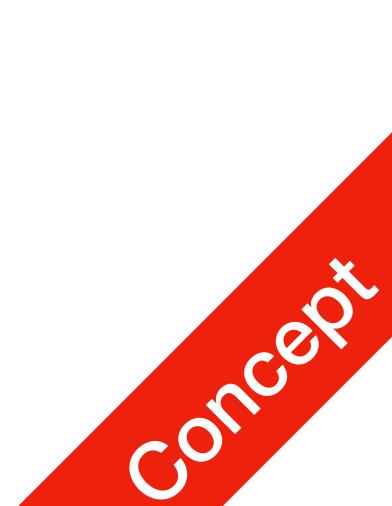
- e.g. $M_3 = X + \overline{Y} + \overline{Z} = \overline{X}YZ = \overline{m_3}$
- Sum of Minterms

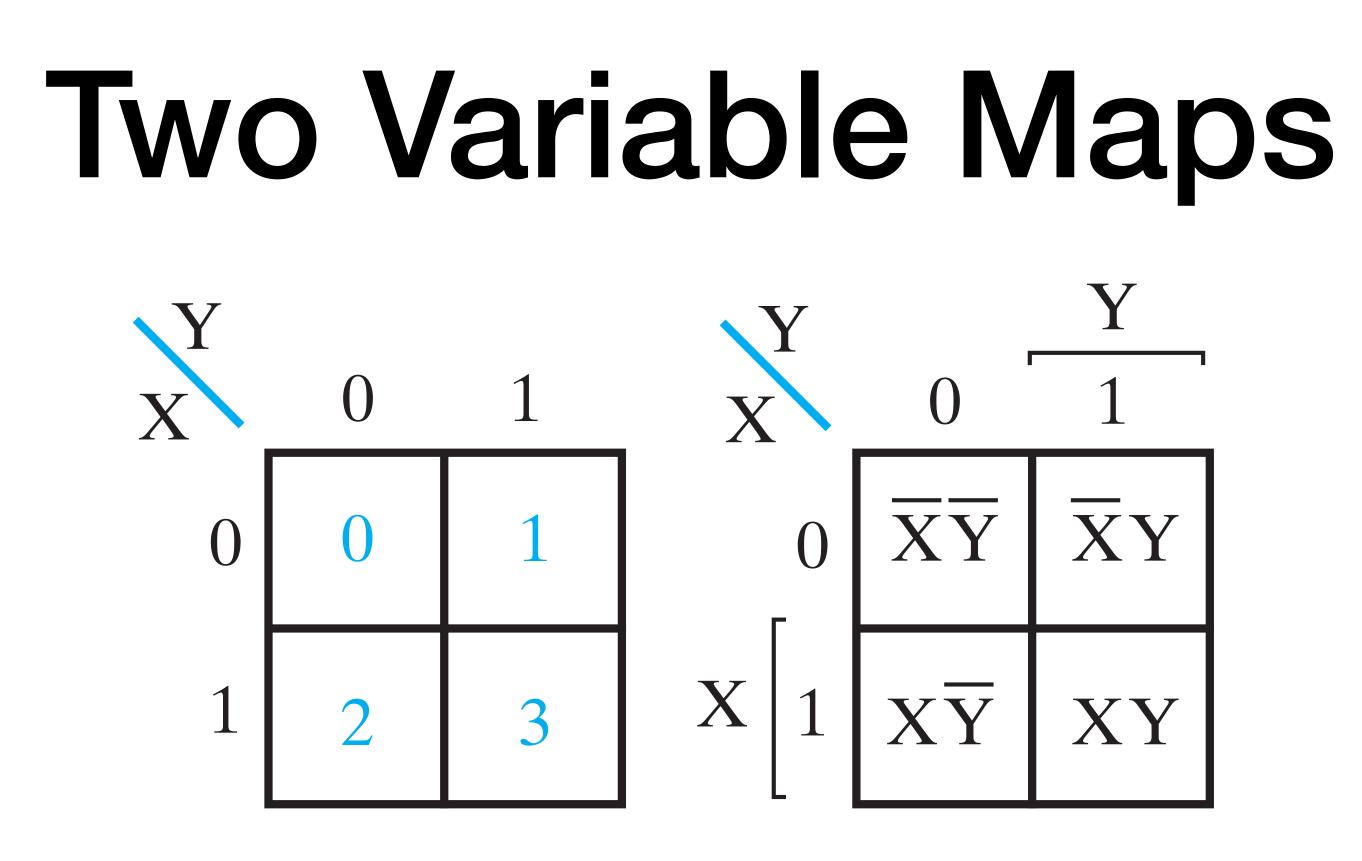
• e.g.
$$F = \overline{X}\overline{Y}\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z +$$

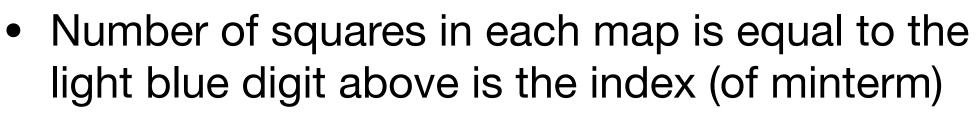
= $\Sigma m(0,2,5,7)$

- Product of Maxterm
 - e.g. $F = (X + Y + Z)(X + \overline{Y} + Z)(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + \overline{Z})$ $= M_0 M_2 M_5 M_7$ $= \Pi M(0,2,5,7)$

$XYZ = m_0 + m_2 + m_5 + m_7$





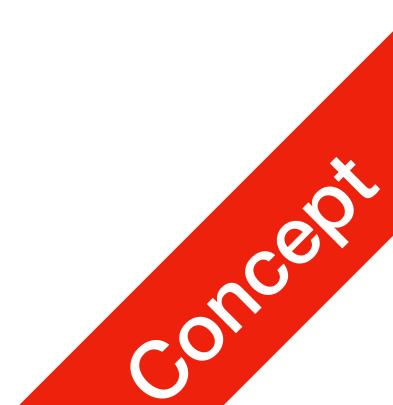


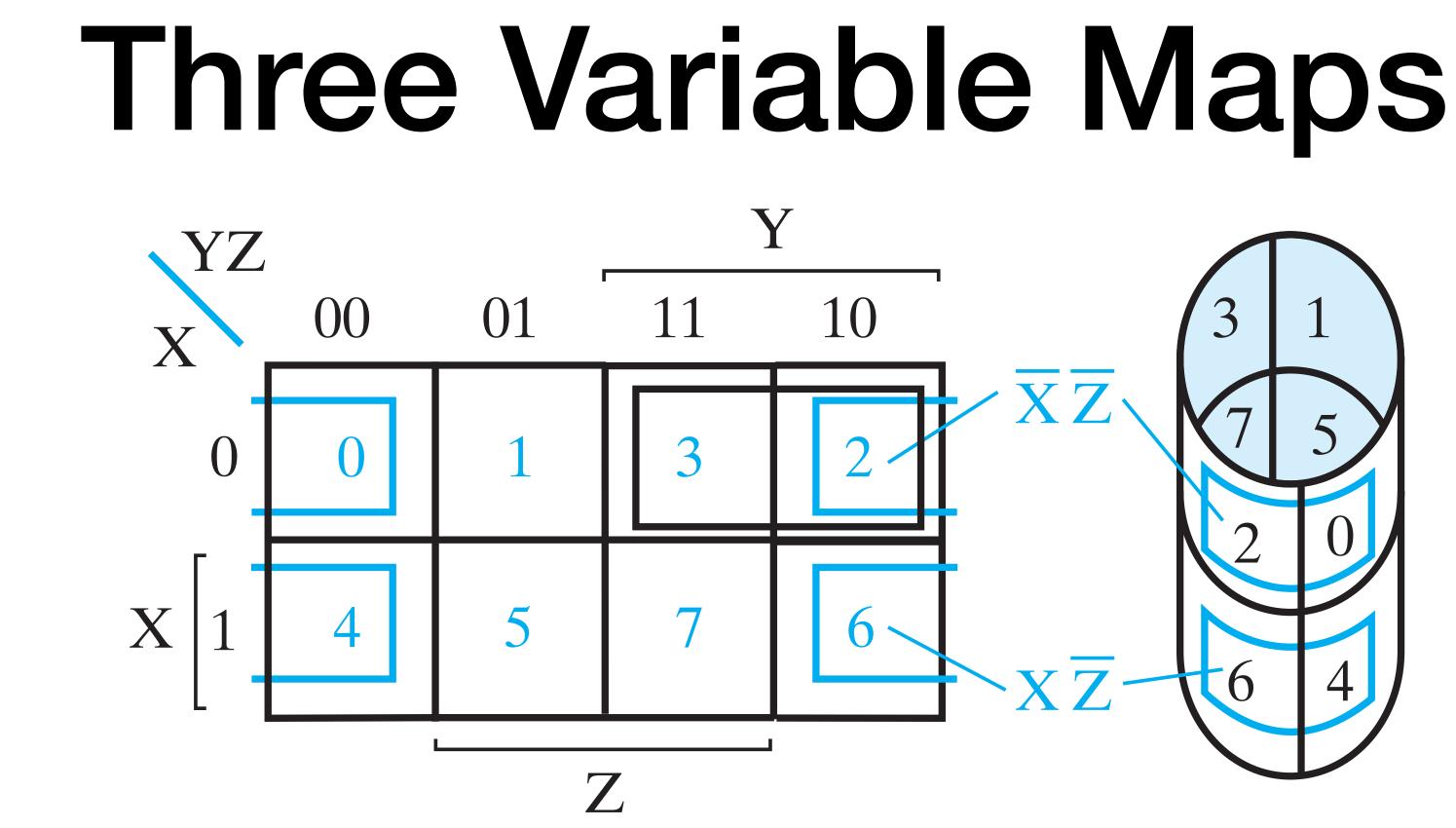
P2.4

K-Map

- Two squares are adjacent if they only differ in one variable
- Binary value inside at each position indicates the truth table value for that term

• Number of squares in each map is equal to the number of minterms for the same number of variables,





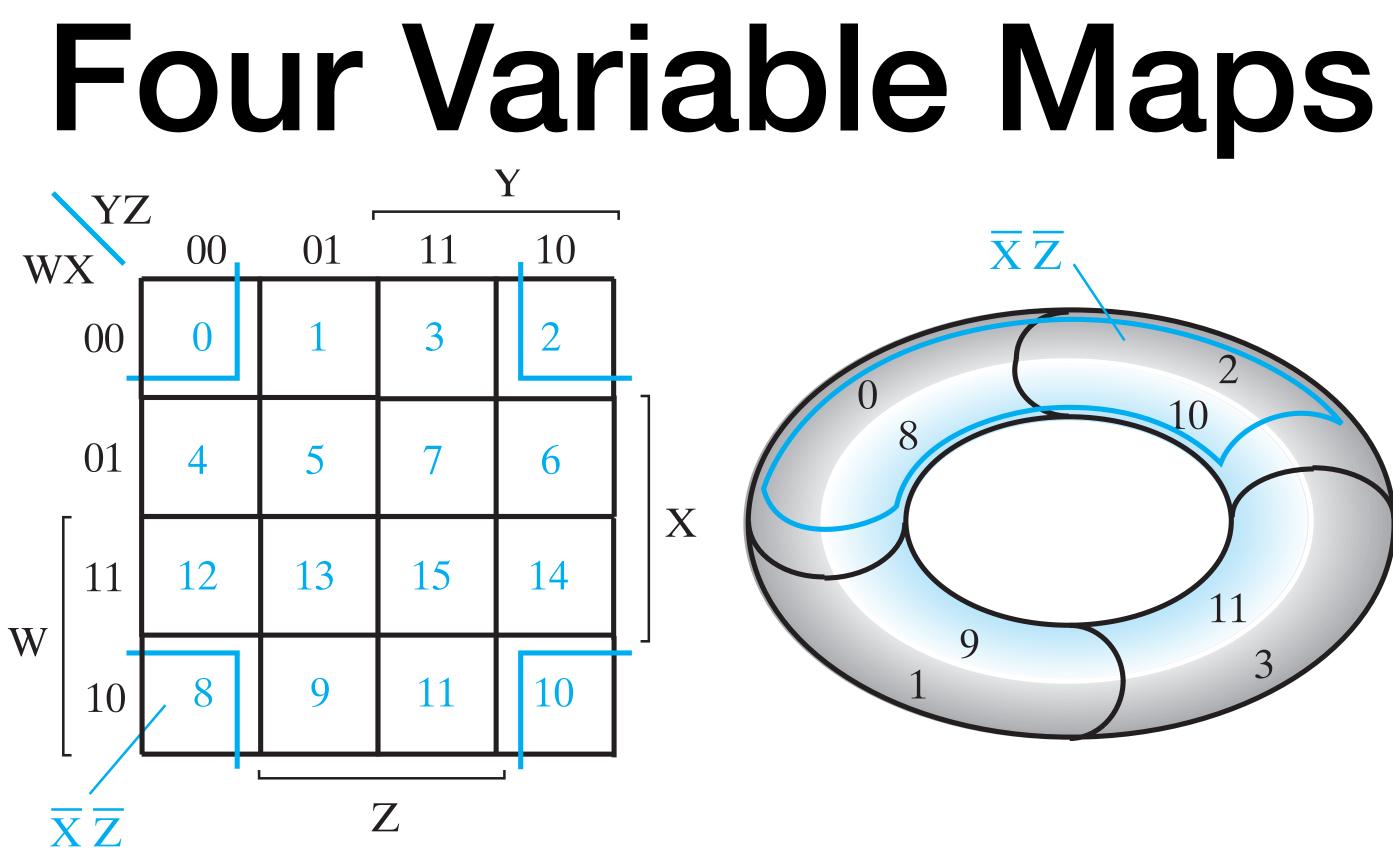
light blue digit above is the index (of minterm)

P2.4

K-Map

- Two squares are adjacent if they only differ in one variable
- Binary value inside at each position indicates the truth table value for that term

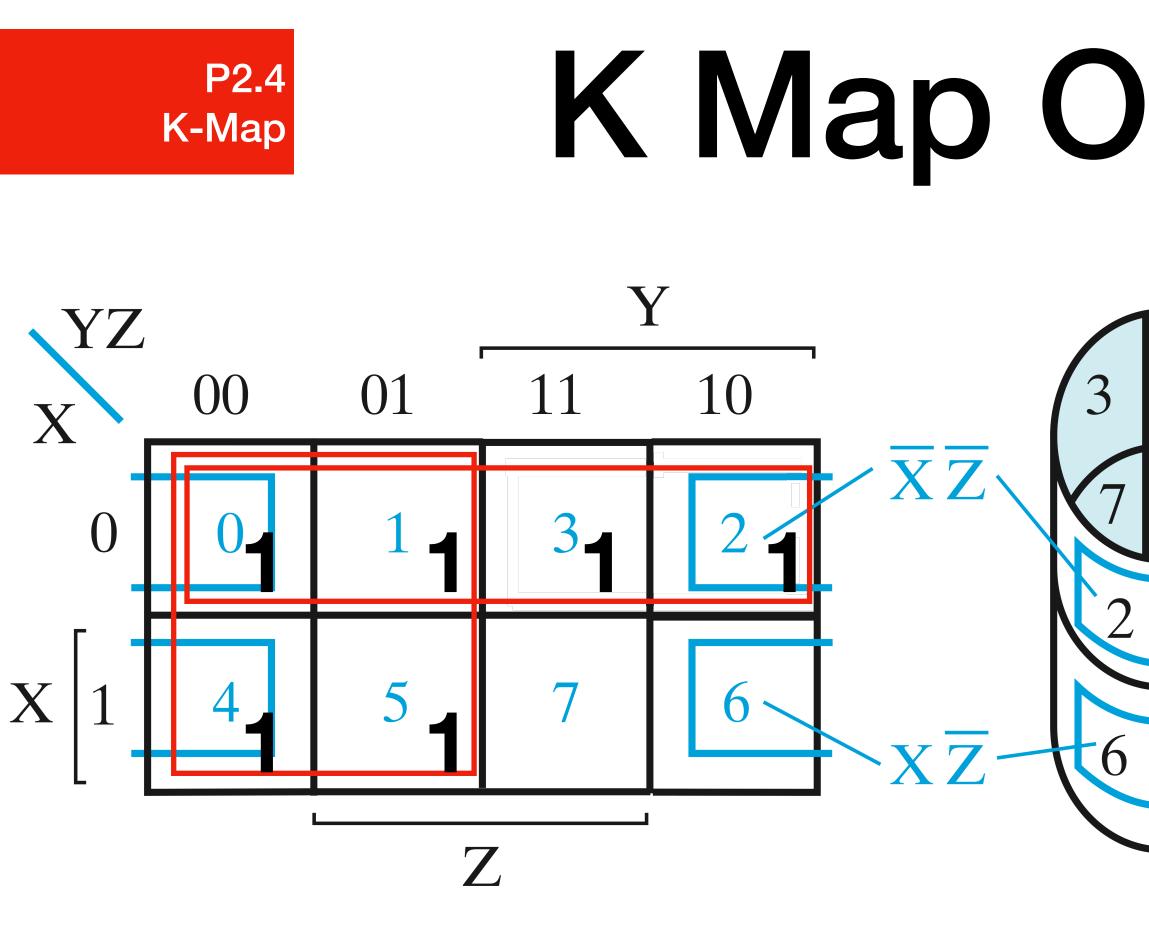
• Number of squares in each map is equal to the number of minterms for the same number of variables,



P2.4 K-Map

- light blue digit above is the index (of minterm)
- Two squares are adjacent if they only differ in one variable
- Binary value inside at each position indicates the truth table value for that term

• Number of squares in each map is equal to the number of minterms for the same number of variables,

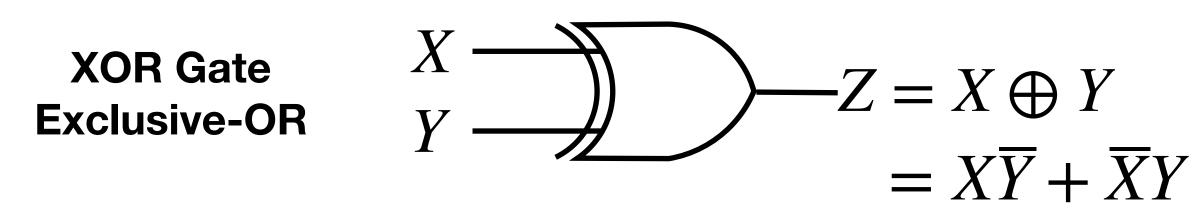


 $F(X, Y, Z) = \Sigma m(0, 1, 2, 3, 4, 5)$ $= \overline{X} + \overline{Y}$

K Map Optimisation

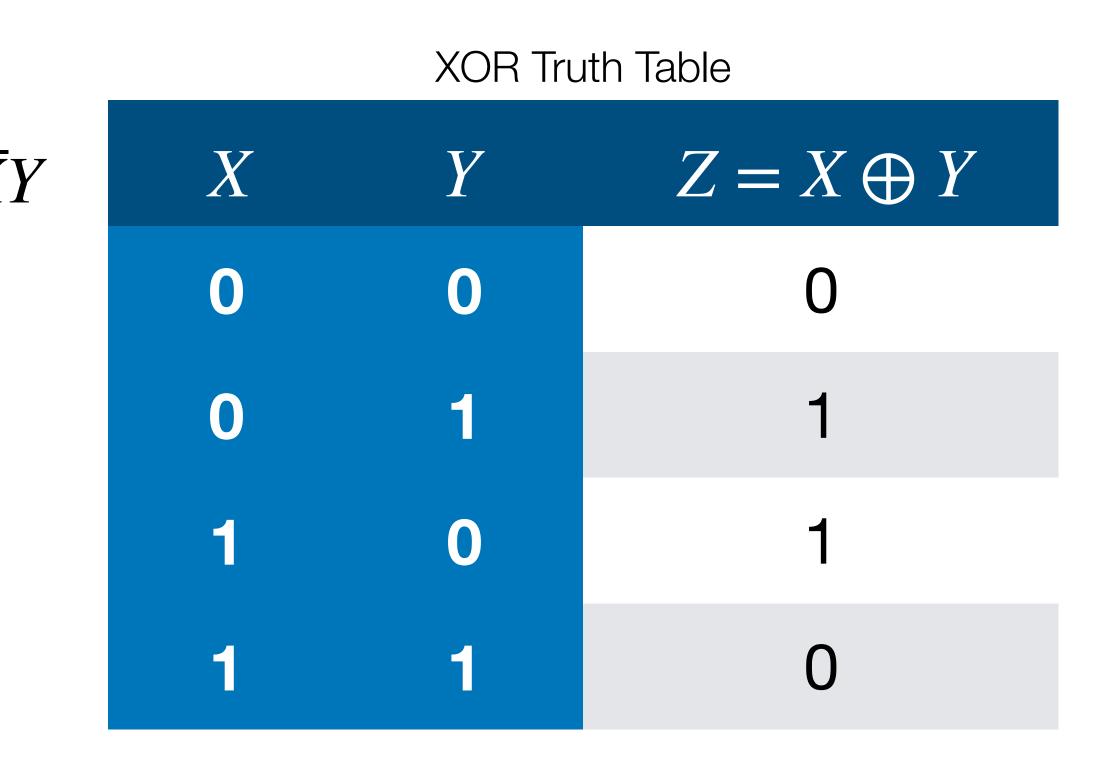
- 1 5 0 4
- Step 1: Enter the values
- Step 2: Identify the set of largest rectangles in which all values are 1, covering all 1s
- Step 3: **Read off** the selected rectangles. If rectangle has odd length edges (excluding 1), split

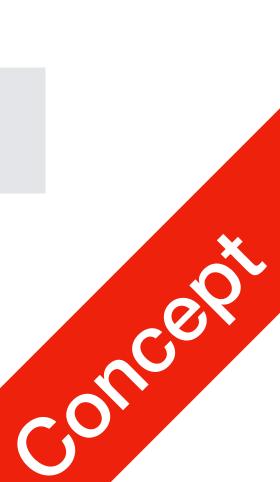
P2.5 **Other Gates**



- $X \oplus 1 = \overline{X}$ • $X \oplus 0 = X$
- $X \oplus \overline{X} = 1$ • $X \oplus X = X$
- $X \oplus \overline{Y} = \overline{X \oplus Y}$ $\overline{X} \oplus Y = \overline{X \oplus Y}$

XOR Gate



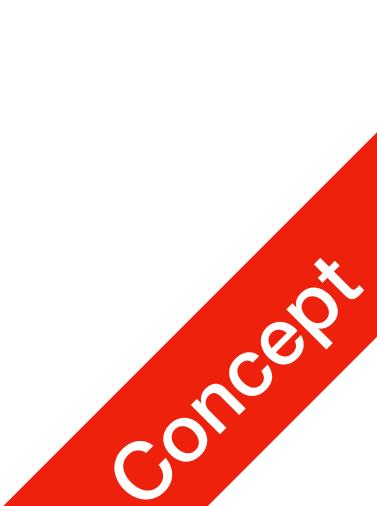


P2.5 **Other Gates**

- $X \oplus 0 = X$
- $X \oplus X = X$
- $X \oplus \overline{Y} = \overline{X \oplus Y}$

XOR Gate

- $X \oplus 1 = \overline{X}$
- $X \oplus \overline{X} = 1$
- $\overline{X} \oplus Y = \overline{X \oplus Y}$



NOT Gate

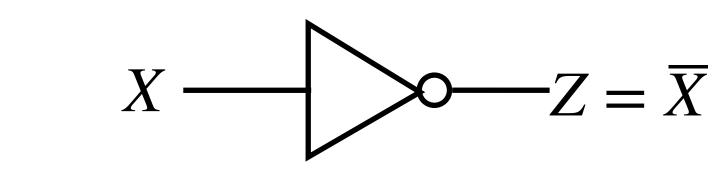
NAND Gate

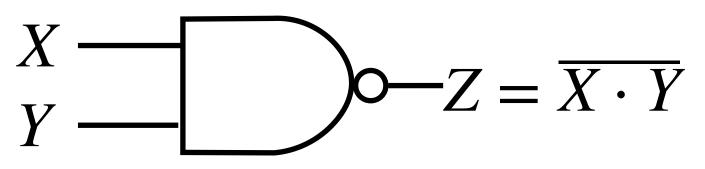
NOR Gate

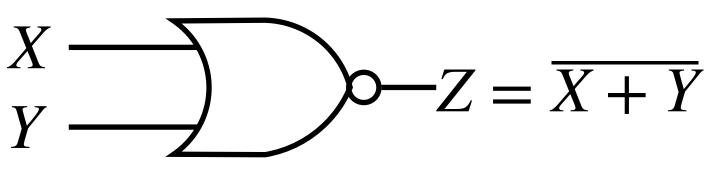
XNOR Gate

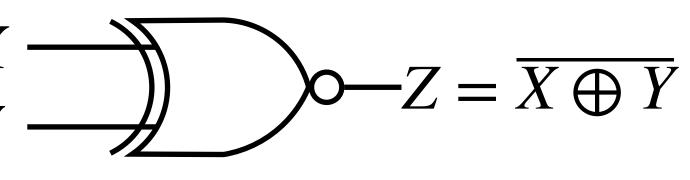
X $oldsymbol{V}$

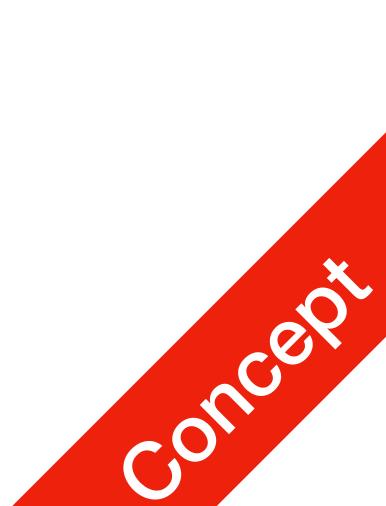
P2.5 **Other Gates**











Boolean Algebra

- AND, OR, NOT Operators and Gates
 - Simple digital circuit implementation
 - Algebraic manipulation using Binary Identities
- Standard Forms
 - Minterm & Maxterm \bullet
 - Sum of Products & Product of Sums
- III. Optimisation Using K-Map (For 2,3,4 Variables)
- IV. XOR, NAND, NOR, XNOR

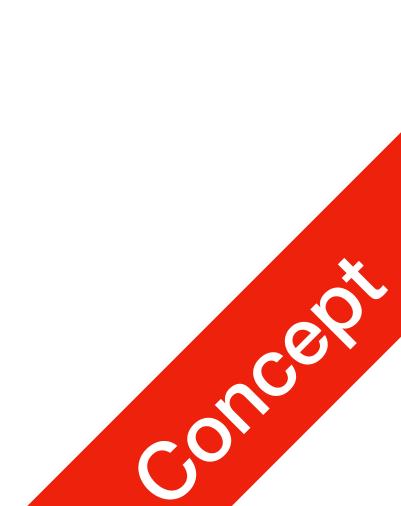
P3 Comb. Design

Lecture 3: Combinational Logic Design

5 Steps Systematic Design Procedures; Functional Blocks; Decoder, Enabler, Multiplexer; Arithmetic Blocks

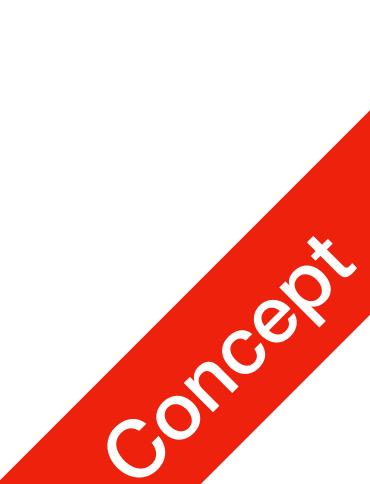
Comb. Design Bystematic Design Procedures

- 1. Specification: Write a specification for the circuit
- 2. **Formulation**: Derive relationship between inputs and outputs of the system e.g. using truth table or Boolean expressions
- 3. **Optimisation**: Apply optimisation, minimise the number of logic gates and literals required
- 4. **Technology Mapping**: Transform design to new diagram using available implementation technology
- 5. **Verification**: Verify the correctness of the final design in meeting the specifications



Hierarchical Design

- "divide-and-conquer"
- Circuit is broken up into individual functional pieces (blocks)
 - Each block has explicitly defined Interface (I/O) and Behaviour
 - A single block can be reused multiple times to simplify design process
 - If a single block is too complex, it can be further divided into smaller blocks, to allow for easier designs



Value-Fixing, Transferring, and **Elementary Func.** Inverting

Value-Fixing: giving a constant value to a wire

- F = 0: F = 1:
- (2)

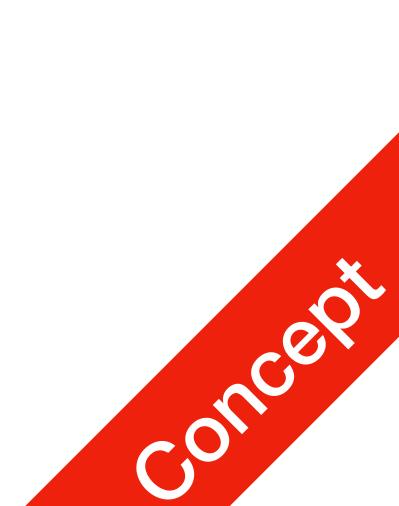
•
$$F = X;$$

P3.2

(3) **Inverting**: inverting the value of a variable

•
$$F = \overline{X}$$

Transferring: giving a variable (wire) value from another variable (wire)



Vector Denotation

(4) Multiple-bit Function

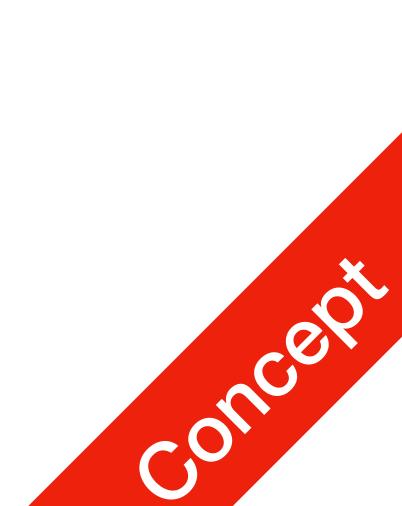
- Functions we've seen so far has only one-bit output: 0/1
- Certain functions may have *n*-bit output

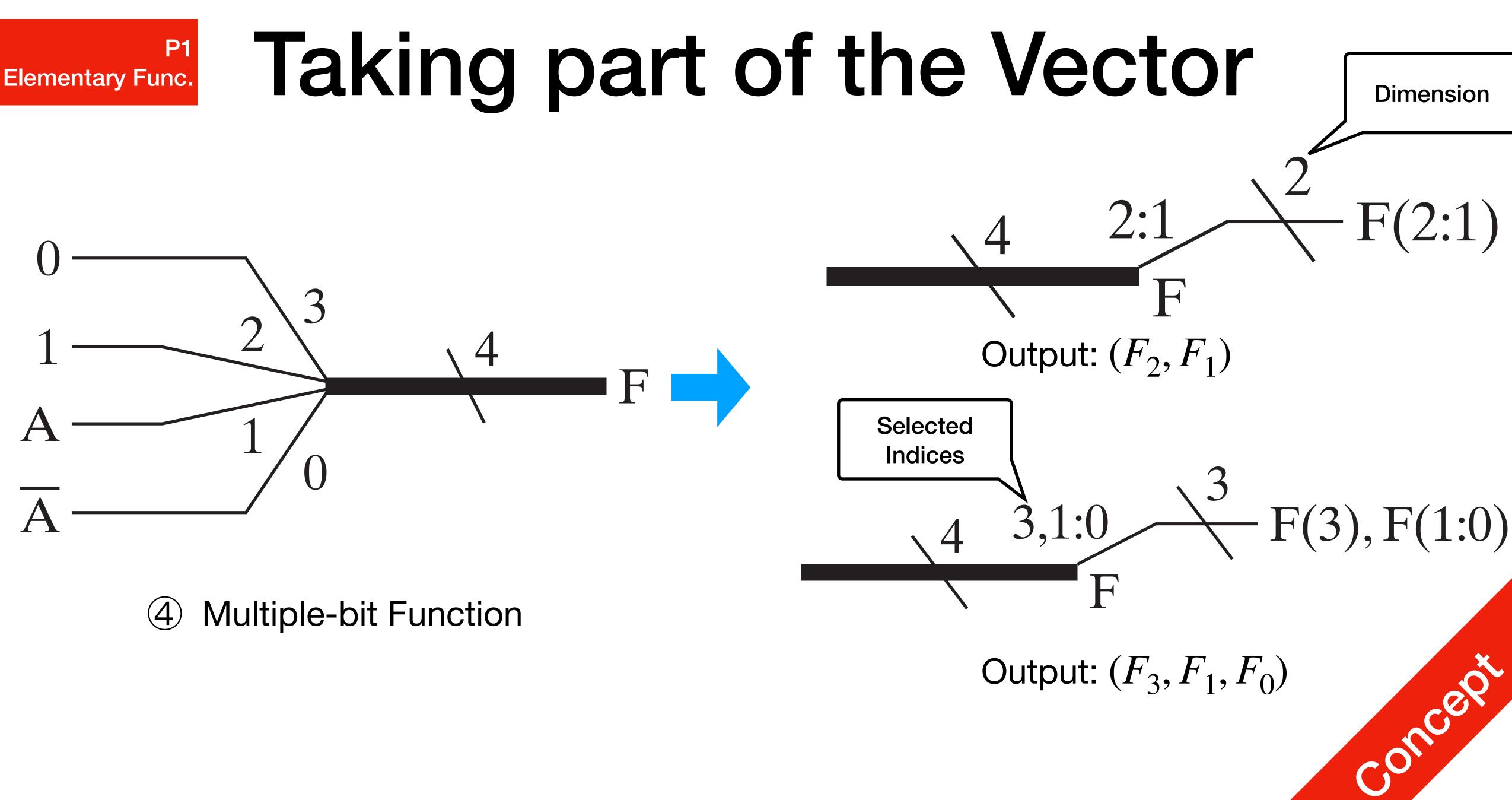
•
$$F(n-1:0) = (F_{n-1}, F_{n-2}, ...$$

Curtain Motor Control Circuit: F

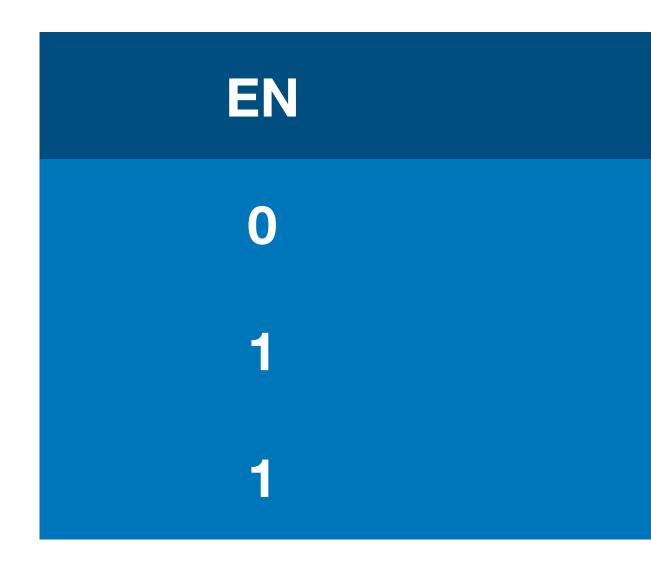
 $., F_0$), each F_i is a one-bit function

$$F = (F_{Motor_1}, F_{Motor_2}, F_{Light})$$



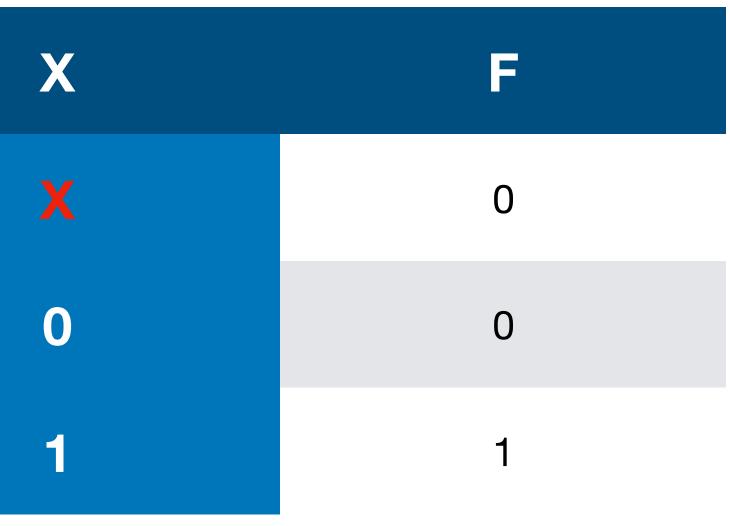


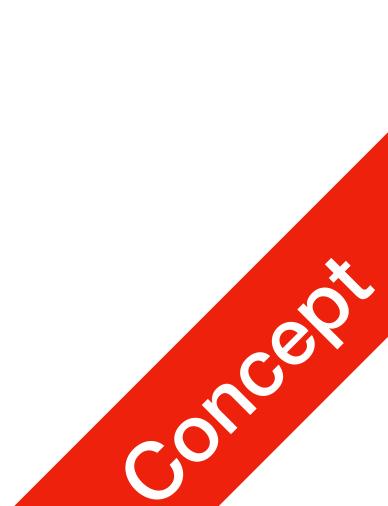
P3.2 **Elementary Func.**



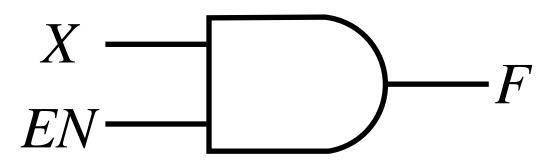
Enabler

• Transferring function, but with an additional EN signal acting as switch



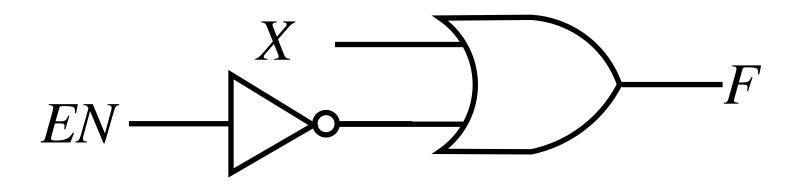


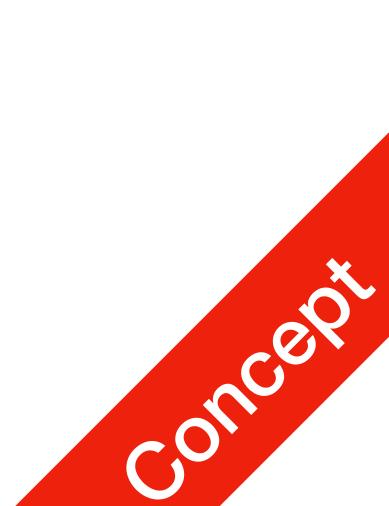
P3.2 **Elementary Func.**



Enabler

• Transferring function, but with an additional *EN* signal acting as switch



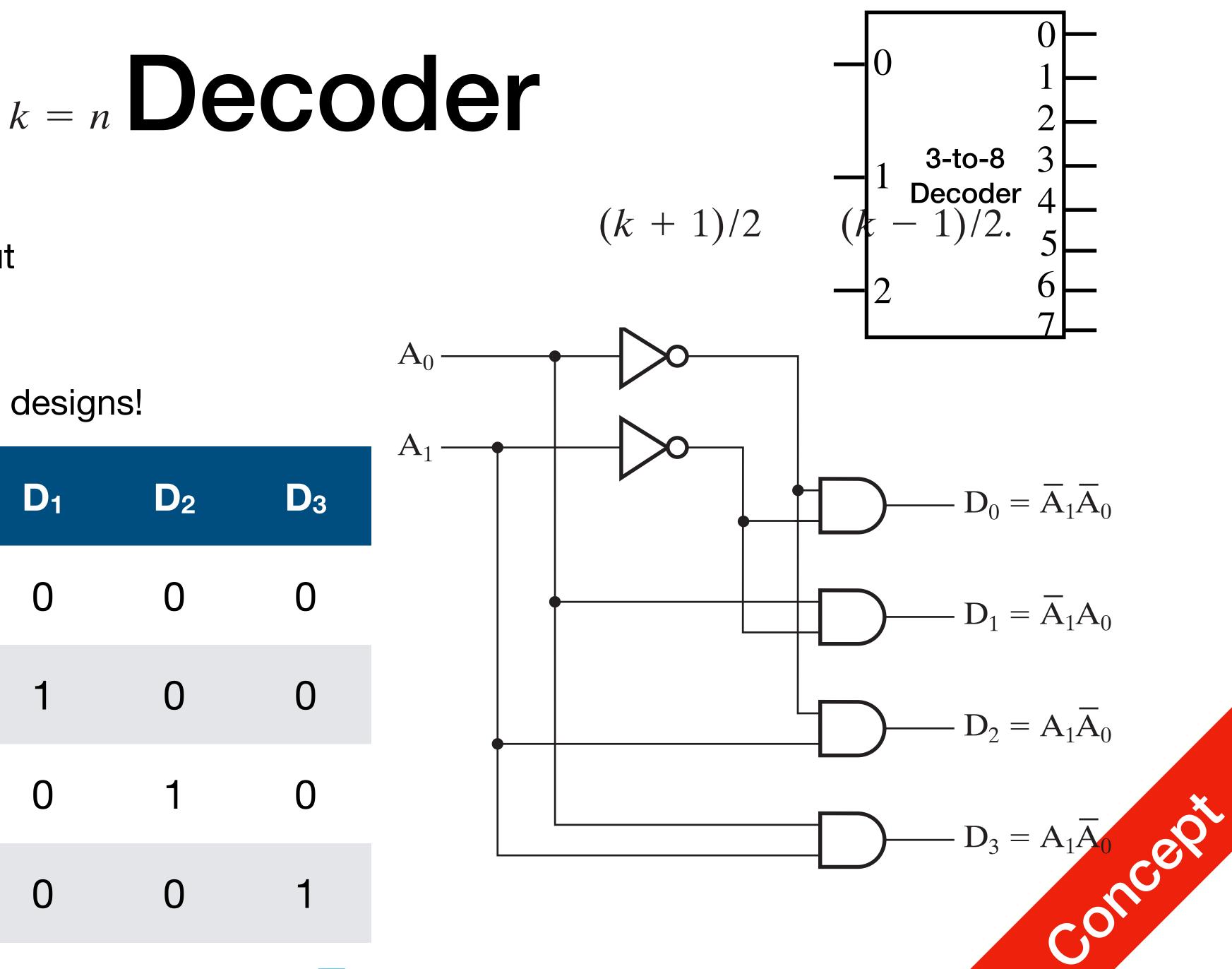


• *n*-bit input, 2^n bits output

•
$$D_i = m_i$$

Design: use hierarchical designs! \bullet

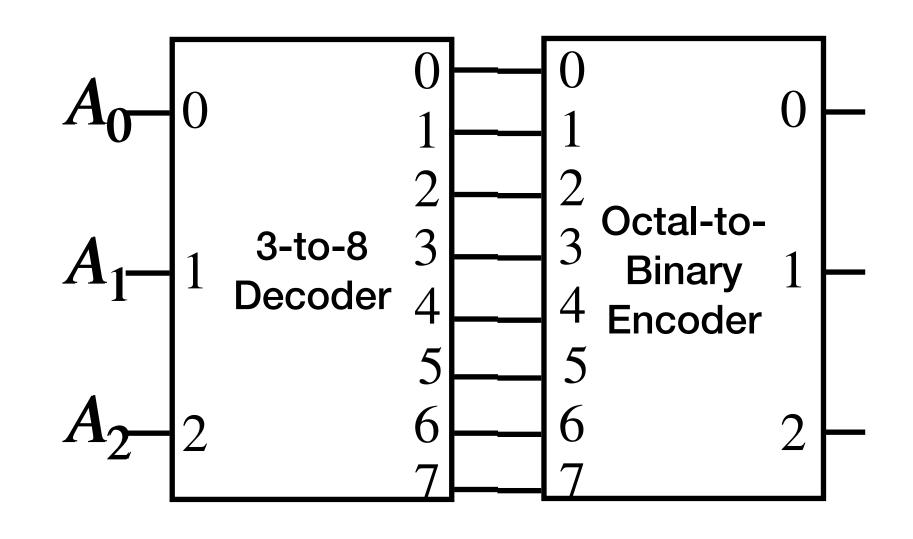
A ₁	A ₀	Do	D ₁	D ₂
0	0	1	0	0
0	1	1 0		0
1	0	0	0	1
1	1	0	0	0

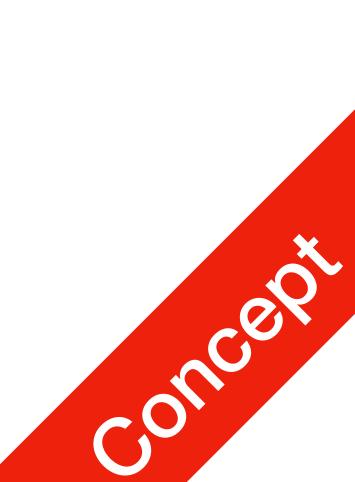


Encoder

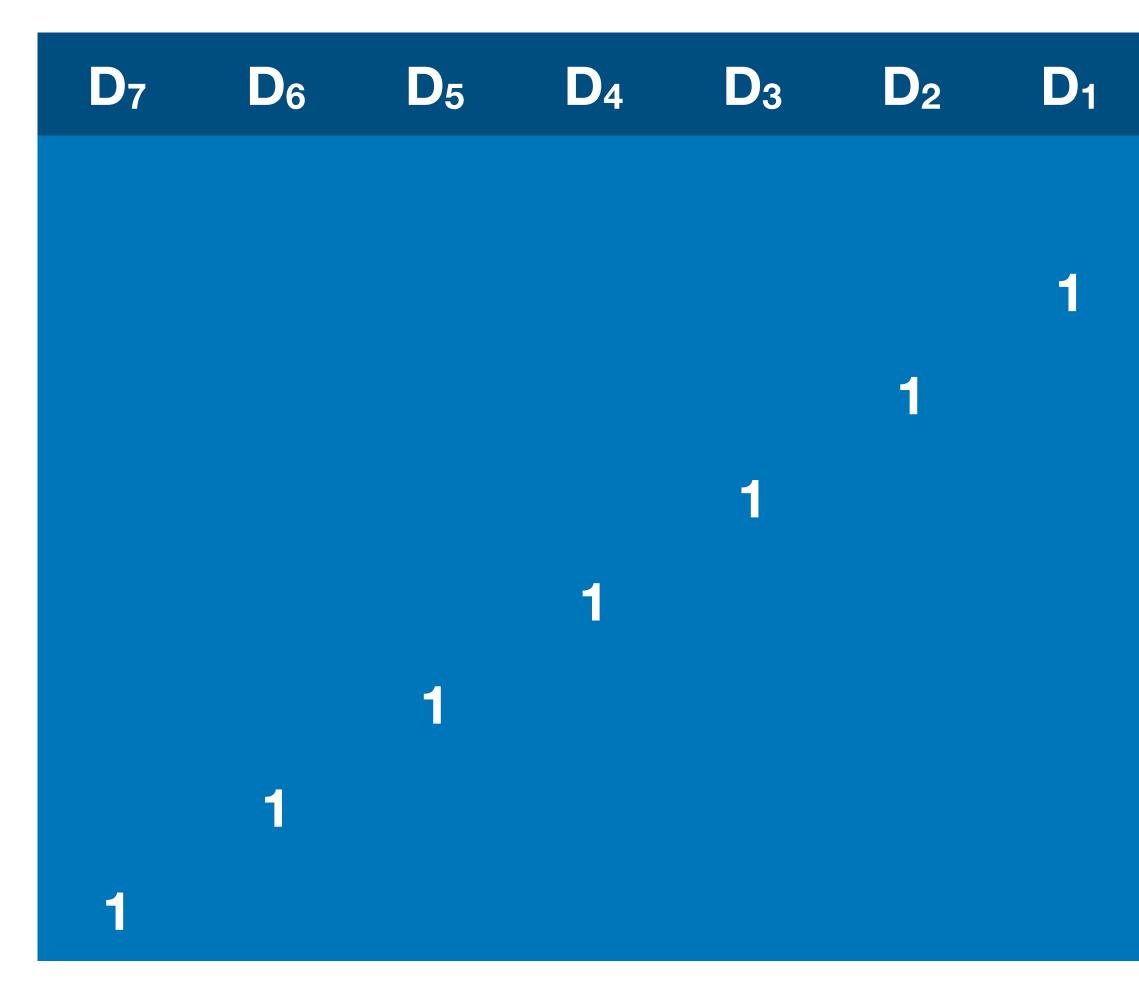
- Inverse operation of a decoder
- 2ⁿ inputs, only one is giving positive input¹
- *n* outputs

1. In reality, could be less



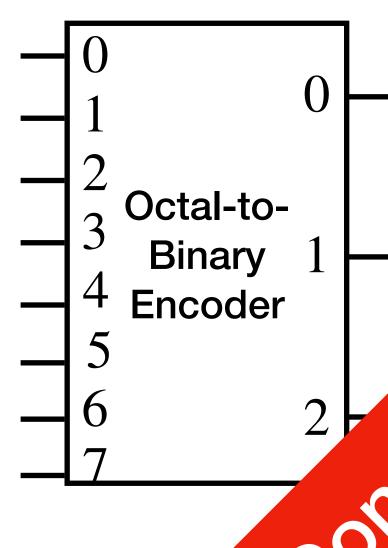


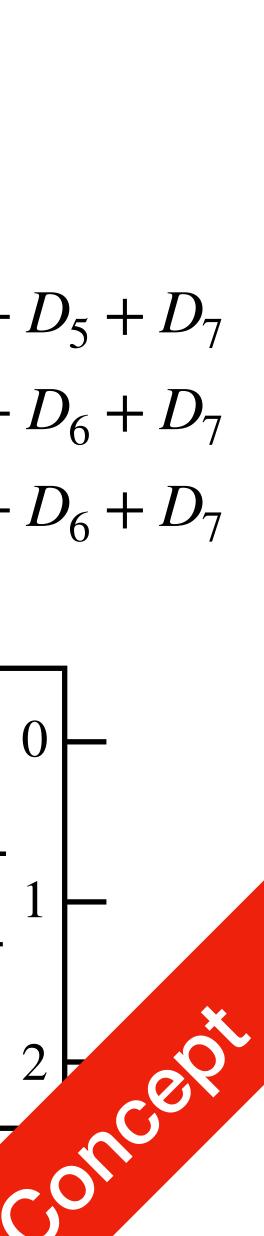
Encoder



D ₀	A 2	A ₁	A ₀
1	0	0	0
	0	0	1
	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0
	1	1	1

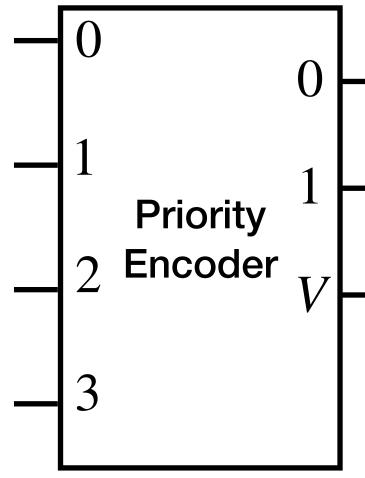
 $A_0 = D_1 + D_3 + D_5 + D_7$ $A_1 = D_2 + D_3 + D_6 + D_7$ $A_2 = D_4 + D_5 + D_6 + D_7$

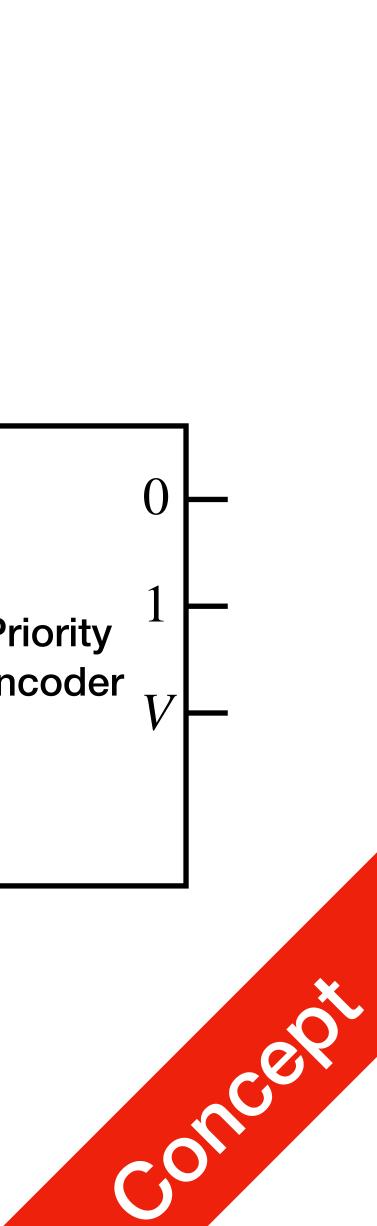




- Additional Validity Output V
 - Indicating whether the input is valid (contains 1)
- Priority
 - Ignores $D_{<i}$ if $D_i = 1$

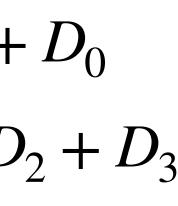
Priority Encoder



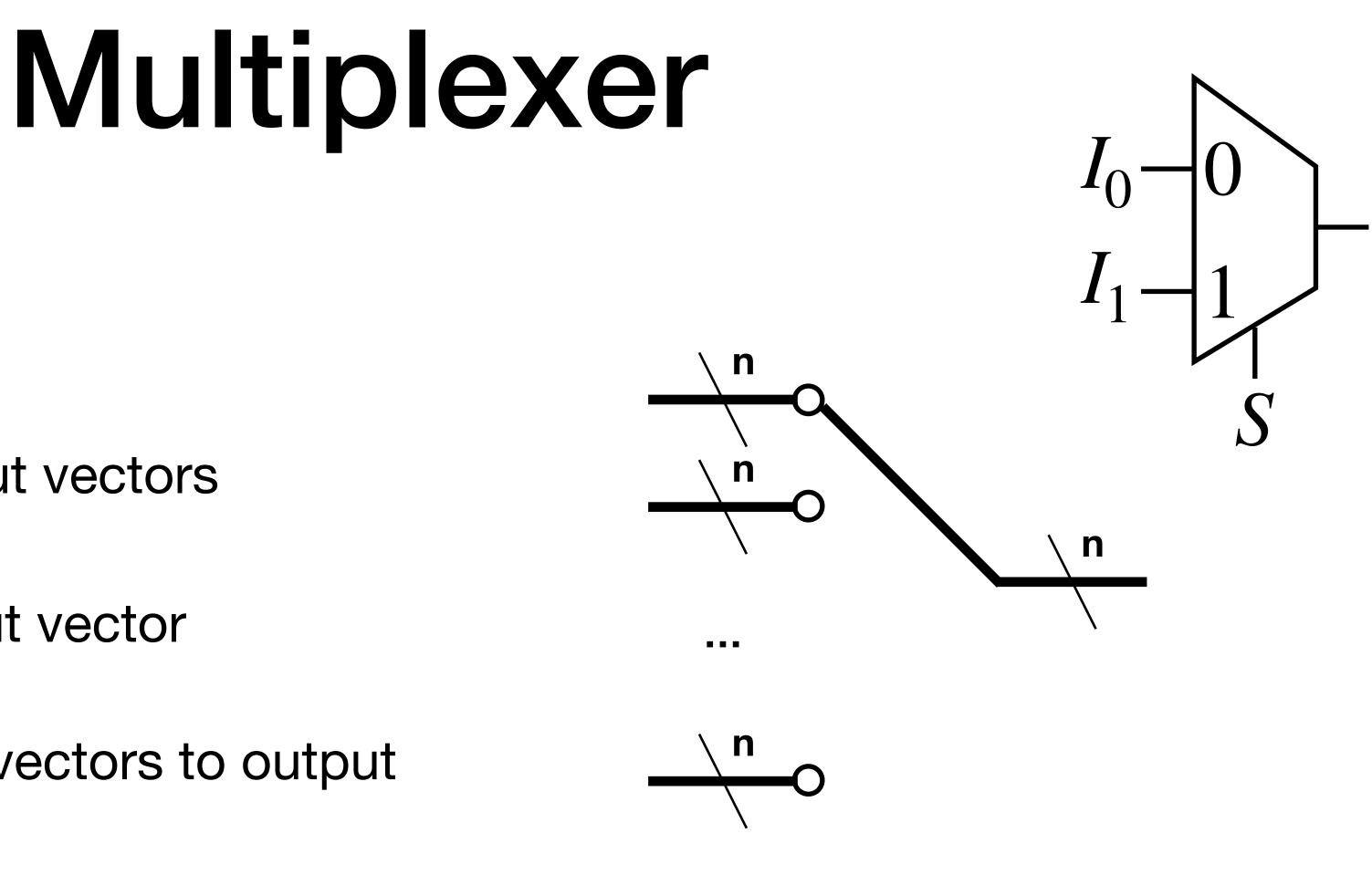


D ₃	D ₂	D ₁	Do	A ₁	A ₀	V	$V = D_3 + D_2 + D_1 + D_0$
0	0	0	0	0	0	0	$A_{1} = D_{3} + \overline{D_{3}}D_{2} = D_{2} + D_{3}$ $A_{0} = \overline{D_{3}}\overline{D_{2}}D_{1} + D_{3}$
0	0	0	1	0	0	1	$=\overline{D_2}D_1 + D_3$
0	0	1	X	0	1	1	
0	1	X	X	1	0	1	$\begin{bmatrix} 1 \\ Priority \\ 2 Encoder \end{bmatrix}$
1	X	X	X	1	1	1	

Priority Encoder



- Multiple *n*-variable input vectors
- Single *n*-variable output vector
- Switches: which input vectors to output



Concert

