
19.10.20 12:30CSCI 150
Introduction to Digital and Computer

System Design
Lecture 3: Combinational Logic Design VII

Jetic Gū

2020 Fall Semester (S3)

Overview
• Focus: Arithmetic Functional Blocks

• Architecture: Combinatory Logical Circuits

• Textbook v4: Ch4 4.3, 4.4, 4.7; v5: Ch2 2.9, Ch3 3.10, 3.11

• Core Ideas:

1. Subtraction II

2. Subtraction III

3. VHDL

Unsigned Binary
Subtraction I

Sum
mary

P0
Review

Review

Unsigned 1-bit Binary
Subtraction

• Implementation using 3-to-8 Decoder

•

•

B = Σm(1,2,3,7)

D = Σm(1,2,4,7)

Rev
iew

P1
Subtraction

X
Y
Z

1-Bit Binary
Subtractor

B

D

B
D

Unsigned Binary
Subtraction

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Input
Output

0
10110
10011
00011

0
Minuend X0:n−1

Borrows

Subtrahend Y0:n−1

Difference D0:n−1

B Z

Technology

• 1 bit Unsigned Subtractor

X0
Y0
Z

1-Bit Binary
Subtractor

B

D D0

X1
Y1

1-Bit Binary
Subtractor

B

D D1

…

Unsigned Binary
Subtraction II

Sum
mary

P1
Subtraction

 when X − Y Y > X

What we have so far

• Binary Adder

• Binary Subtractor (,)X − Y X ≥ Y

Rev
iew

P1
Subtraction

Unsigned Binary Subtraction

• We learned to perform subtraction, by subtracting the smaller number from
the greater number

• What if it’s the opposite? i.e. ?X < Y, F = X − Y

Conc
ep

t

P1
Subtraction

X > Y, F = X − Y

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

11000
10011

−00110
01101

Minuend

Borrows

Subtrahend

Difference

00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

11000
10011

−00110
01101

Minuend

Borrows

Subtrahend

Difference

0 00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

11000
10011

−00110
01101

Minuend

Borrows

Subtrahend

Difference

0 00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

11000
10011

−00110
01101

Minuend

Borrows

Subtrahend

Difference

0 00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

This is correct

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

11000
10011

−00110
01101

Minuend

Borrows

Subtrahend

Difference

0 00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

This is correct This is incorrect

• Standard subtraction module works if the Minuend is bigger than the
Subtrahend

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

11000
10011

−00110
01101

Minuend

Borrows

Subtrahend

Difference

0 00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

This is correct This is incorrect

• Standard subtraction module works if the Minuend is bigger than the
Subtrahend

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

This is incorrect

Y

X

D
Corrected D′ −01101

(2’s compliment)

• Standard subtraction module works if the Minuend is bigger than the
Subtrahend

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

This is incorrect

• Incorrect output  D
= 2n + X − Y

Y

X

D
Corrected D′ −01101

(2’s compliment)

• Standard subtraction module works if the Minuend is bigger than the
Subtrahend

Unsigned Binary Subtraction

Conc
ep

t

P1
Subtraction

00110
00110

−10011
10011

Minuend

Borrows

Subtrahend

Difference

1

This is incorrect

• Incorrect output  D
= 2n + X − Y

• Correct output  D′

= −(Y − X)
= −(2n − D)
= −(D + 1)

Y

X

D
Corrected D′ −01101

(2’s compliment)

• Given binary unsigned integer of bits , its 2s compliment 

• Proof

• Biggest number represented in bit:

•

• Implementation

• Inversion and plus 1, easily doable as complementer

n D
2n − D = D + 1

n (11...1)2 = 2n − 1

2n − D = [(11...1)2 + 1] − D = (11...1)2 − D + 1 = D + 1

2s compliment

Conc
ep

t

P1
Subtraction

Subtraction

Exa
mple

P1
Subtraction

Subtraction

1. Compute 20-15=5 using 6-bit binary

Exa
mple

P1
Subtraction

Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2

Exa
mple

P1
Subtraction

Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2

Exa
mple

P1
Subtraction

011110
010100

−001111
000101

0Borrows

Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2

2. Compute 15-20=-5 using 6-bit binary and 2s complement

Exa
mple

P1
Subtraction

011110
010100

−001111
000101

0Borrows

Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2

2. Compute 15-20=-5 using 6-bit binary and 2s complement

Exa
mple

P1
Subtraction

011110
010100

−001111
000101

0Borrows

Subtraction

1. Compute 20-15=5 using 6-bit binary

• ,

2. Compute 15-20=-5 using 6-bit binary and 2s complement

• Correction: 2s complement:

20 = (010100)2 15 = (001111)2

(111011)2 (000101)2

Exa
mple

P1
Subtraction

100000
001111

−010100
111011

1Borrows

000101

Subtraction

1. Compute 20-15=5 using 6-bit binary

• ,

2. Compute 15-20=-5 using 6-bit binary and 2s complement

•

20 = (010100)2 15 = (001111)2

Exa
mple

P1
Subtraction

100000
001111

−010100
111011

1Borrows

Subtraction
1. Compute 7-15=-8 using 6-bit binary and 2s complement

Exa
mple

P1
Subtraction

Full Unsigned Subtraction

• Solution 1

• Compare the Minuend and Subtrahend, switch places if the Subtrahend is
greater, then add negative sign

• Solution 2

• Use 2s compliment

Conc
ep

t

P1
Subtraction

Full Unsigned Subtraction

Conc
ep

t

P1
Subtraction

ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor

���

X Y

Output

Full Unsigned Subtraction

Conc
ep

t

P1
Subtraction

ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor

���

X Y

Borrow

Complement

ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor

���

Adder-Subtractor

Conc
ep

t

P1
Subtraction ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor

���

X Y

Output

Unsigned Binary
Subtraction III

Sum
mary

P2
Subtraction

What do you mean we can do subtraction using an
adder?

2s compliment

Conc
ep

t

P2
Subtraction

2n − D = D + 1

Subtraction using 2s
Complement

Conc
ep

t

P2
Subtraction

• Input: and

• : 2s complement ()

•

• Since , and we only output -bits, it can be discarded

X Y

Y Y′ = Y + 1 Y + 1 = 2n − Y

X − Y = X + (2n − Y) − 2n = X + Y′ − 2n

2n = (10...0)2 n

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

 X = 0001010100

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

 X = 0001010100
 Y = 0001000011

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

 X = 0001010100
 Y = 0001000011
 Y′ = 11101111012s complement

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

 X = 0001010100
 Y = 0001000011
 Y′ = 1110111101

X + Y′ = 10000010001
2s complement

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

 X = 0001010100
 Y = 0001000011
 Y′ = 1110111101

X + Y′ = 10000010001
 X + Y′ − 210 = 0000010001

2s complement

discard carry

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

 X = 0001010100
 Y = 0001000011
 Y′ = 1110111101

X + Y′ = 10000010001
 X + Y′ − 210 = 0000010001

(84 − 67)10 = 1710 = 10001 = 0000010001

2s complement

discard carry

verify

Subtraction using 2s
Complement

• 84 - 67 (10bit)

Exa
mple

P2
Subtraction

 X = 0001010100
 Y = 0001000011
 Y′ = 1110111101

X + Y′ = 10000010001
 X + Y′ − 210 = 0000010001

(84 − 67)10 = 1710 = 10001 = 0000010001

2s complement

discard carry

verify

correct!

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

1. Adder

X0:n−1
Y0:n−1

Z

-Bit Binary
Adder

n
S

C

S0:n−1

C

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

1. Adder

2. Complementer (Inverting and add 1)

X0:n−1
Y0:n−1

Z

-Bit Binary
Adder

n
S

C

S0:n−1

C

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

X0:n−1
Y0:n−1

Z

-Bit Binary
Adder

n
S

C

S0:n−1

C

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y X0:n−1
Y0:n−1

Z

-Bit Binary
Adder

n
S

C

S0:n−1

C

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y

• Subtraction: X − Y = X + Y + 1 − 2n

X0:n−1
Y0:n−1

Z

-Bit Binary
Adder

n
S

C

S0:n−1

C

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y

• Subtraction: X − Y = X + Y + 1 − 2n

• We are using -bit adder, can be disregardedn 2n

X0:n−1
Y0:n−1

Z

-Bit Binary
Adder

n
S

C

S0:n−1

C

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y

• Subtraction: X − Y = X + Y + 1 − 2n

• We are using -bit adder, can be disregardedn 2n

• The plus 1 here can be input to the adderZ

X0:n−1
Y0:n−1

Z

-Bit Binary
Adder

n
S

C

S0:n−1

C

Adder-Subtractor Unit

Conc
ep

t

P2
Subtraction

ARITHMETIC FUNCTIONS AND HDLS

adder interconnected to form an adder–subtractor. We have used 2s complement,
since it is most prevalent in modern systems. The 2s complement can be obtained
by taking the 1s complement and adding 1 to the least significant bit. The 1s com-
plement can be implemented easily with inverter circuits, and we can add 1 to the
sum by making the input carry of the parallel adder equal to 1. Thus, by using 1s
complement and an unused adder input, the 2s complement is obtained inexpen-
sively. In 2s complement subtraction, as the correction step after adding, we com-
plement the result and append a minus sign if an end carry does not occur. The
correction operation is performed by using either the adder–subtractor a second
time with M ! 0 or a selective complementer as in Figure 6.

The circuit for subtracting A " B consists of a parallel adder as shown in
Figure 5, with inverters placed between each B terminal and the corresponding
full-adder input. The input carry C0 must be equal to 1. The operation that is per-
formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the
2s complement of B. For unsigned numbers, it gives A " B if or the 2s
complement of B " A if .

The addition and subtraction operations can be combined into one circuit
with one common binary adder. This is done by including an exclusive-OR gate
with each full adder. A 4-bit adder–subtractor circuit is shown in Figure 7. Input S
controls the operation. When S ! 0 the circuit is an adder, and when S ! 1 the cir-
cuit becomes a subtractor. Each exclusive-OR gate receives input S and one of the
inputs of B, Bi. When S ! 0, we have Bi ⊕ 0. If the full adders receive the value of
B, and the input carry is 0, the circuit performs A plus B. When S ! 1, we have Bi ⊕
1 = and C0 ! 1. In this case, the circuit performs the operation A plus the 2s
complement of B.

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A3 B2 A2 B1 A1 B0 A0

FIGURE 7
Adder–Subtractor Circuit

A B#
A B$

Bi

���

Add/Subtract

Z

X0Y0X1Y1X2Y2X3Y3

Adder Subtractor Units
(Unsigned)

• Binary Adder

• Binary Subtractor

• Binary Adder-Subtractor Unit, using Adder, Subtractor, Complementer and
Multiplexer

• Binary Adder-Subtractor Unit using Adder and XOR

Rev
iew

P0-2
Adder-Subtractor

Excercises

Sum
mary

P3
Exercises

2s Complement

Subtraction using 2s Complement

Subtraction

Exe
rci

se

P1
Subtraction

Subtraction

• Compute 10-7 using 4-bit binary using Adder and 2s complement

Exe
rci

se

P1
Subtraction

Subtraction

Exe
rci

se

P1
Subtraction

Subtraction

• Compute 24-17 using 8-bit binary using Adder and 2s complement

Exe
rci

se

P1
Subtraction

Hardware Description
Language

Sum
mary

P4
VHDL

VHDL (VHSIC-HDL): Very High Speed Integrated
Circuit Hardware Description Language

Previous: 1-bit Half Adder

• Create a new component in VHDL called
HalfAdder1

• Input: X, Y

• Output: S, C

• Don’t use AFTER

Prac
tic

e

P4
VHDL

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two signi!cant bits to be added. The third input, Z, rep-
resents the carry from the previous lower signi!cant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simpli!ed sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd 158 23/01/15 1:51 PM

Previous: 1-bit Half Adder

architecture arch1 of HalfAdder is

begin

 S <= X XOR Y;

 C <= X AND Y;

end arch1;

Prac
tic

e

P4
VHDL

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two signi!cant bits to be added. The third input, Z, rep-
resents the carry from the previous lower signi!cant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simpli!ed sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd 158 23/01/15 1:51 PM

Today’s Tasks

Exe
rci

se

P4
VHDL

Today’s Tasks

• 1-bit Half Adder

Exe
rci

se

P4
VHDL

Today’s Tasks

• 1-bit Half Adder

• 1-bit Full Adder using Schema Diagram (Logic Circuit Diagram)

Exe
rci

se

P4
VHDL

Today’s Tasks

• 1-bit Half Adder

• 1-bit Full Adder using Schema Diagram (Logic Circuit Diagram)

• 4-bit Full Adder using Schema Diagram (Logic Circuit Diagram)

Exe
rci

se

P4
VHDL

Today’s Tasks

• 1-bit Half Adder

• 1-bit Full Adder using Schema Diagram (Logic Circuit Diagram)

• 4-bit Full Adder using Schema Diagram (Logic Circuit Diagram)

• 4-bit Adder-Subtractor using Schema Diagram (Logic Circuit Diagram)

Exe
rci

se

P4
VHDL

