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Overview
• Focus: Arithmetic Functional Blocks


• Architecture: Combinatory Logical Circuits


• Textbook v4: Ch4 4.3, 4.4, 4.7; v5: Ch2 2.9, Ch3 3.10, 3.11


• Core Ideas:


1. Subtraction II


2. Subtraction III


3. VHDL
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Unsigned 1-bit Binary 
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• Implementation using 3-to-8 Decoder
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Unsigned Binary 
Subtraction
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Unsigned Binary 
Subtraction II
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 when X − Y Y > X



What we have so far

• Binary Adder


• Binary Subtractor ( , )X − Y X ≥ Y
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Unsigned Binary Subtraction

• We learned to perform subtraction, by subtracting the smaller number from 
the greater number


• What if it’s the opposite? i.e. ?X < Y, F = X − Y

Conc
ep

t

P1 
Subtraction

X > Y, F = X − Y
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Unsigned Binary Subtraction
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• Standard subtraction module works if the Minuend is bigger than the 
Subtrahend

Unsigned Binary Subtraction
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• Standard subtraction module works if the Minuend is bigger than the 
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• Standard subtraction module works if the Minuend is bigger than the 
Subtrahend

Unsigned Binary Subtraction
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• Standard subtraction module works if the Minuend is bigger than the 
Subtrahend

Unsigned Binary Subtraction
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Minuend

Borrows

Subtrahend

Difference

1

This is incorrect

• Incorrect output  D
= 2n + X − Y

• Correct output  D′ 

= −(Y − X)
= −(2n − D)
= −(D + 1)
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• Given binary unsigned integer of  bits , its 2s compliment 



• Proof


• Biggest number represented in  bit: 


• 


• Implementation


• Inversion and plus 1, easily doable as complementer

n D
2n − D = D + 1

n (11...1)2 = 2n − 1

2n − D = [(11...1)2 + 1] − D = (11...1)2 − D + 1 = D + 1

2s compliment
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Subtraction
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Subtraction

1. Compute 20-15=5 using 6-bit binary

Exa
mple

P1 
Subtraction



Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2
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Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2
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Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2

2. Compute 15-20=-5 using 6-bit binary and 2s complement
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Subtraction

1. Compute 20-15=5 using 6-bit binary

• , 20 = (010100)2 15 = (001111)2

2. Compute 15-20=-5 using 6-bit binary and 2s complement
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Subtraction

1. Compute 20-15=5 using 6-bit binary


• , 


2. Compute 15-20=-5 using 6-bit binary and 2s complement


• Correction:  2s complement: 

20 = (010100)2 15 = (001111)2

(111011)2 (000101)2
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Subtraction

1. Compute 20-15=5 using 6-bit binary


• , 


2. Compute 15-20=-5 using 6-bit binary and 2s complement


•

20 = (010100)2 15 = (001111)2
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Subtraction
1. Compute 7-15=-8 using 6-bit binary and 2s complement
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Full Unsigned Subtraction

• Solution 1


• Compare the Minuend and Subtrahend, switch places if the Subtrahend is 
greater, then add negative sign


• Solution 2


• Use 2s compliment
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Full Unsigned Subtraction
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ARITHMETIC FUNCTIONS AND HDLS

As we will see, this circuit is more complex than necessary. To reduce the
amount of hardware, we would like to share logic between the adder and the sub-
tractor. This can also be done using the notion of the complement. So before con-
sidering the combined adder–subtractor further, we will take a more careful look
at complements.

Complements

There are two types of complements for each base-r system: the radix comple-
ment, which we saw earlier for base 2, and the diminished radix complement. The
first is referred to as the r’s complement and the second as the (r ! 1)’s comple-
ment. When the value of the base r is substituted in the names, the two types are
referred to as the 2s and 1s complements for binary numbers and the 10s and 9s
complements for decimal numbers, respectively. Since our interest for the
present is in binary numbers and operations, we will deal with only 1s and 2s
complements.

Given a number N in binary having n digits, the 1s complement of N is
defined as (2n ! 1) ! N. 2n is represented by a binary number that consists of a
1 followed by n 0s. 2n ! 1 is a binary number represented by n 1s. For example,
if n " 4, we have 24 " (10000)2 and 24 ! 1 " (1111)2 . Thus, the 1s complement
of a binary number is obtained by subtracting each digit from 1. When subtract-
ing binary digits from 1, we can have either 1 ! 0 " 1 or 1 ! 1 " 0, which

A B
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2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

FIGURE 6
Block Diagram of Binary Adder–Subtractor
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What do you mean we can do subtraction using an 
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2s compliment

Conc
ep

t

P2 
Subtraction

2n − D = D + 1



Subtraction using 2s 
Complement
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• Input:  and 


• : 2s complement  ( )


• 


• Since , and we only output -bits, it can be discarded

X Y

Y Y′ = Y + 1 Y + 1 = 2n − Y

X − Y = X + (2n − Y) − 2n = X + Y′ − 2n

2n = (10...0)2 n
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                        X = 0001010100
                        Y = 0001000011
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                        X = 0001010100
                        Y = 0001000011
                       Y′ = 11101111012s complement
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                        X = 0001010100
                        Y = 0001000011
                       Y′ = 1110111101

X + Y′ = 10000010001
2s complement



Subtraction using 2s 
Complement

• 84 - 67 (10bit)

Exa
mple

P2 
Subtraction

                        X = 0001010100
                        Y = 0001000011
                       Y′ = 1110111101

X + Y′ = 10000010001
      X + Y′ − 210 = 0000010001

2s complement

discard carry
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                        X = 0001010100
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                       Y′ = 1110111101

X + Y′ = 10000010001
      X + Y′ − 210 = 0000010001

(84 − 67)10 = 1710 = 10001 = 0000010001
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verify



Subtraction using 2s 
Complement

• 84 - 67 (10bit)
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                        X = 0001010100
                        Y = 0001000011
                       Y′ = 1110111101

X + Y′ = 10000010001
      X + Y′ − 210 = 0000010001

(84 − 67)10 = 1710 = 10001 = 0000010001

2s complement

discard carry

verify

correct!
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2. Complementer (Inverting and add 1)
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1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one
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1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y X0:n−1
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1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y

• Subtraction: X − Y = X + Y + 1 − 2n
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1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y

• Subtraction: X − Y = X + Y + 1 − 2n

• We are using -bit adder,  can be disregardedn 2n
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Adder-Subtractor Unit
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1. Adder

2. Complementer (Inverting and add 1)

• Or just inverting, and then plus one

• Addition: X + Y

• Subtraction: X − Y = X + Y + 1 − 2n

• We are using -bit adder,  can be disregardedn 2n

• The plus 1 here can be  input to the adderZ
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-Bit Binary 
Adder

n
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S0:n−1

C
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ARITHMETIC FUNCTIONS AND HDLS

adder interconnected to form an adder–subtractor. We have used 2s complement,
since it is most prevalent in modern systems. The 2s complement can be obtained
by taking the 1s complement and adding 1 to the least significant bit. The 1s com-
plement can be implemented easily with inverter circuits, and we can add 1 to the
sum by making the input carry of the parallel adder equal to 1. Thus, by using 1s
complement and an unused adder input, the 2s complement is obtained inexpen-
sively. In 2s complement subtraction, as the correction step after adding, we com-
plement the result and append a minus sign if an end carry does not occur. The
correction operation is performed by using either the adder–subtractor a second
time with M ! 0 or a selective complementer as in Figure 6. 

The circuit for subtracting A " B consists of a parallel adder as shown in
Figure 5, with inverters placed between each B terminal and the corresponding
full-adder input. The input carry C0 must be equal to 1. The operation that is per-
formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the
2s complement of B. For unsigned numbers, it gives A " B if  or the 2s
complement of B " A if . 

The addition and subtraction operations can be combined into one circuit
with one common binary adder. This is done by including an exclusive-OR gate
with each full adder. A 4-bit adder–subtractor circuit is shown in Figure 7. Input S
controls the operation. When S ! 0 the circuit is an adder, and when S ! 1 the cir-
cuit becomes a subtractor. Each exclusive-OR gate receives input S and one of the
inputs of B, Bi. When S ! 0, we have Bi ⊕ 0. If the full adders receive the value of
B, and the input carry is 0, the circuit performs A plus B. When S ! 1, we have Bi ⊕
1 =  and C0 ! 1. In this case, the circuit performs the operation A plus the 2s
complement of B. 

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A3 B2 A2 B1 A1 B0 A0

FIGURE 7
Adder–Subtractor Circuit

A B#
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Adder Subtractor Units 
(Unsigned)

• Binary Adder


• Binary Subtractor


• Binary Adder-Subtractor Unit, using Adder, Subtractor, Complementer  and 
Multiplexer 


• Binary Adder-Subtractor Unit using Adder and XOR
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Excercises
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2s Complement

Subtraction using 2s Complement



Subtraction
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Subtraction

• Compute 10-7 using 4-bit binary using Adder and 2s complement
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Subtraction

• Compute 24-17 using 8-bit binary using Adder and 2s complement
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Hardware Description 
Language
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VHDL

VHDL (VHSIC-HDL): Very High Speed Integrated 
Circuit Hardware Description Language



Previous: 1-bit Half Adder

• Create a new component in VHDL called 
HalfAdder1


• Input: X, Y


• Output: S, C


• Don’t use AFTER
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158          CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND 
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input 
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted 
by X and Y, represent the two signi!cant bits to be added. The third input, Z, rep-
resents the carry from the previous lower signi!cant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary 
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value 
of the bit of the sum, and the binary variable C gives the output carry. The truth table 
of the full adder is listed in Table 3-12. The values for the outputs are determined 
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all 
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are 
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41. 
The simpli!ed sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates. 
However, the map for output S is recognized as an odd function, as discussed in 

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd   158 23/01/15   1:51 PM



Previous: 1-bit Half Adder

architecture arch1 of HalfAdder is 

begin 

    S <= X XOR Y; 

    C <= X AND Y; 

end arch1;
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of the bit of the sum, and the binary variable C gives the output carry. The truth table 
of the full adder is listed in Table 3-12. The values for the outputs are determined 
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equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41. 
The simpli!ed sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates. 
However, the map for output S is recognized as an odd function, as discussed in 

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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