CSCI 150 Introduction to Digital and Computer System Design Lecture 3: Combinational Logic Design III

Jetic Gū 2020 Fall Semester (S3)

Overview

- Focus: Logic Functions
- Architecture: Combinatory Logical Circuits
- Textbook v4: Ch3 3.6; v5: Ch3 3.1, 3.4
- Core Ideas:
 - 1. Terminologies: Value-Fixing, Transferring, Inverting, Enabler
 - 2. Decoder

Review Systematic Design Procedures

- 1. Specification: Write a specification for the circuit
- 2. **Formulation**: Derive relationship between inputs and outputs of the system e.g. using truth table or Boolean expressions
- 3. **Optimisation**: Apply optimisation, minimise the number of logic gates and literals required
- 4. **Technology Mapping**: Transform design to new diagram using available implementation technology
- 5. **Verification**: Verify the correctness of the final design in meeting the specifications

Review Systematic Design Procedures

- Hierarchical Design
 - \bullet 5-step design procedures for each block
 - Reusable, easier and more efficient Implementation

Divide complex designs into smaller functional blocks, then apply the same

Value-Fixing, Transferring, Inverting, Enabler

Elementary Combinational Logic Functions

Value-Fixing, Transferring, and Inverting

P1 Elementary Func.

Value-Fixing: giving a constant value to a wire

- F = 0: F = 1:
- (2)

•
$$F = X;$$

•
$$F = \overline{X}$$

Transferring: giving a variable (wire) value from another variable (wire)

Vector Denotation

(4) Multiple-bit Function

- Functions we've seen so far has only one-bit output: 0/1
- Certain functions may have *n*-bit output
 - $F(n 1 : 0) = (F_{n-1}, F_{n-2}, ..., F_0)$, each F_i is a one-bit function
 - Curtain Motor Control Circuit: F

$$F = (F_{Motor_1}, F_{Motor_2}, F_{Light})$$

Vector Denotation

1. These two are equivalent

Vector Denotation

Multiple-bit Function $(\mathbf{4})$

Enabler

• Transferring function, but with an additional *EN* signal acting as switch

Enabler

• Transferring function, but with an additional *EN* signal acting as switch

- A building with individual lights F(3:0), and individual switches S(3:0)
 - S_i controls F_i
- Master switch: *EN*

Enabler

- A building with individual lights F(3:0), and individual switches S(3:0)
 - S_i controls F_i
- Master switch: *EN*

Enabler

Summary

- **1** Value-Fixing
- **②** Transferring
- ③ Inverting
- **④ Multiple-bit Function**
- **5** Enabler

Decoding *n*-bit input, 2^{*n*}-bit output

Decoder

- *n*-bit input
 - 2^n different combinations
- Decoder
 - *n*-bit input, $n-2^n$ output each unique input produces a unique output

1-to-2 Decoder • 1 x NOT Gate

• D_i	$= m_i$			
A ₁	A ₀	D ₀	D ₁	D ₂
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
1	1	0	0	0

• D_i	$= m_i$			
A ₁	A ₀	D ₀	D ₁	D ₂
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
1	1	0	0	0

• $D_i = m_i$							
A ₁	A ₀	D ₀	D ₁	D ₂			
0	0	1	0	0			
0	1	0	1	0			
1	0	0	0	1			
1	1	0	0	0			

•	$D_i =$	= <i>m_i</i>							
A 2	A 1	A ₀	D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	De
0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0
0	1	1	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	0	0
1	0	1	0	0	0	0	0	1	0
1	1	0	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	0	0

3-to-8 Decoder . 1 x 1-to-2 Decoder

- 1 x 2-to-4 Decoder
- 8 x 2-input AND Gate

•	$D_i =$	= <i>m</i> _i							
A ₂	A ₁	A ₀	D ₀	D ₁	D ₂	D ₃	D 4	D 5	De
0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0
0	1	1	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	0	0
1	0	1	0	0	0	0	0	1	0
1	1	0	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	0	0

3-to-8 Decoder . 1 x 1-to-2 Decoder

- 1 x 2-to-4 Decoder
- 8 x 2-input AND Gate

• $D_i = m_i$									
A ₂	A ₁	A ₀	D ₀	D ₁	D ₂	D ₃	D ₄	D 5	De
	0	0	1	0	0	0	0	0	0
•	0	1	0	1	0	0	0	0	0
U	1	0	0	0	1	0	0	0	0
	1	1	0	0	0	1	0	0	0
	0	0	0	0	0	0	1	0	0
-	0	1	0	0	0	0	0	1	0
	1	0	0	0	0	0	0	0	1
	1	1	0	0	0	0	0	0	0

• $D_i = m_i$ $A_2 \quad A_1 \quad A_0 \quad D_0 \quad D_1 \quad D_2 \quad D_3 \quad D_4 \quad D_5 \quad D_6 \quad D_7$ F $\left(\right)$ $\mathbf{0}$ 0 0 0 0

P2 Decoder

4-to-16 Decoder. 1 x 1-to-2 Decoder

• 4bit input, 16bits output $D_{0:7}^4 = \overline{A_3} D_{0:7}^3$ • $D_i = m_i$ A₃ A₂ A₁ A₀ D₀ D₁ D₂ D₃ D₄ D₅ D₆ D₇ 0 0 \mathbf{O} \mathbf{O} \mathbf{O} 0 0 $\mathbf{0}$ 1 0 0 \mathbf{O} \mathbf{O} 1 0 0 1 0 \mathbf{O} \mathbf{O} ()

1. Incomplete Truth table

Technology

Incremental Design

- 1 x 3-to-8 Decoder
- 16 x 2-input AND Gate

$$_{7} D_{8:15}^4 = A_3 D_{0:7}^3$$

A 3	A ₂	A ₁	A 0	D 8	D ₉	D ₁₀	D ₁₁	D ₁₂	D ₁₃	D ₁₄	D ₁
	0	0	0	1	0	0	0	0	0	0	0
	0	0	1	0	1	0	0	0	0	0	0
	0	1	0	0	0	1	0	0	0	0	0
4	0	1	1	0	0	0	1	0	0	0	0
	1	0	0	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	0	1	0	0
	1	1	0	0	0	0	0	0	0	1	С
	1	1	1	0	0	0	0	0	0	0	1

P2 Decoder

4-to-16 Decoder. 1 x 1-to-2 Decoder **Incremental Design**

• 4bit input, 16bits output

Technology

- 1 x 3-to-8 Decoder
- 16 x 2-input AND Gate

 $D_{0.7}^4 = \overline{A_3} D_{0.7}^3$

 $D_{8\cdot15}^4 = A_3 D_{0:7}^3$

• $D_i = m_i$

• 4bit input, 16bits output

$$D_{0:7}^4 = \overline{A_3} D_0^3$$
• $D_i = m_i$

A 3	A ₂	A ₁	A ₀	D_0	D_1	D_2	D ₃	D ₄	D_5	D_6	D
	0	0	1	0	0	0	0	0	0	0	
	•	0	1	0	1	0	0	0	0	0	0
	U	1	0	0	0	1	0	0	0	0	0
0		1	1	0	0	0	1	0	0	0	0
U		0	0	0	0	0	0	1	0	0	0
	-	0	1	0	0	0	0	0	1	0	0
		1	0	0	0	0	0	0	0	1	0
		1	1	0	0	0	0	0	0	0	1

1. Incomplete Truth table

Recursive Design

• 16 x 2-input AND Gate

$$_{7} D_{8:15}^4 = A_3 D_{0:7}^3$$

A 3	A ₂	A ₁	A 0	D 8	D ₉	D ₁₀	D ₁₁	D ₁₂	D 13	D ₁₄	D ₁
		0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	
	U	1	0	0	0	1	0	0	0	0	0
-		1	1	0	0	0	1	0	0	0	0
		0	0	0	0	0	0	1	0	0	0
	4	0	1	0	0	0	0	0	1	0	0
		1	0	0	0	0	0	0	0	1	0
		1	1	0	0	0	0	0	0	0	1

Recursive Design

• 4bit input, 16bits output • $D_i = m_i$

1. Incomplete Truth table

Technology

16 x 2-input AND Gate

 $D_{0.7}^4 = \overline{A_3} D_{0.7}^3 \quad D_{8:15}^4 = A_3 D_{0:7}^3$

• 4bit input, 16bits output

• $D_i = m_i$

Recursive Design

16 x 2-input AND Gate

4-to-16 Decoder. 2 x 2-to-4 Decoder 16 x 2-input AND Gate

• 4bit input, 16bits output

•
$$D_i = m_i$$

$D^4 = D^4_{0.15} = [\overline{A_3}D^3_{0.7}; A_3D^3_{0.7}] = [\overline{A_3}D^3; A_3D^3]$

Bracket: concatenation of vectors

Recursive Design

• 4bit input, 16bits output

• $D_i = m_i$

 $D^4 = [\overline{A_3}D^3; A_3D^3]$

Recursive Design

16 x 2-input AND Gate

- 4bit input, 16bits output

Technology

4-to-16 Decoder. 2 x 2-to-4 Decoder

Recursive Design

 $D^4 = [\overline{A_3}D^3; A_3D^3]$

16 x 2-input AND Gate

 $\begin{bmatrix} D_1^2 \\ 2 \end{bmatrix} = \begin{bmatrix} \overline{A_2} D^2; A_2 D^2 \end{bmatrix}$

• 4bit input, 16bits output

• $D_i = m_i$

Recursive Design

$$D^4 = [\overline{A_3}D^3; A_3D^3]$$

16 x 2-input AND Gate \bullet

 $D^{3} = [\overline{A_{2}}D^{2}; A_{2}D^{2}]$

P2 Decoder

4-to-16 Decoder. 2 x 2-to-4 Decoder

• 4bit input, 16bits output

•
$$D_i = m_i$$

$$D^{3} = [\overline{A_{2}}D^{2}; A_{2}D^{2}]$$
$$D^{4} = [\overline{A_{3}}D^{3}; A_{3}D^{3}] = [\overline{A_{3}}D^{3}; A_{3}D^{3}] = [\overline{A_{3}}D^{3}]$$

$$= [\overline{A_2}]$$

$$= [\overline{A_3}]$$

$$= [\overline{A_3}]$$

Technology

Recursive Design

16 x 2-input AND Gate

 $\overline{A_{2}}[\overline{A_{2}}D^{2};A_{2}D^{2}];A_{3}[\overline{A_{2}}D^{2};A_{2}D^{2}]]$ $[\overline{A_{7}}D^{2};\overline{A_{3}}A_{2}D^{2}];[A_{3}\overline{A_{2}}D^{2};A_{3}A_{2}D^{2}]]$ $[\overline{A_2}D^2; \overline{A_3}A_2D^2; A_3\overline{A_2}D^2; A_3\overline{A_2}D^2; A_3A_2D^2]$ $[\overline{A_2}; \overline{A_3}A_2; A_3\overline{A_2}; A_3\overline{A_2}; A_3A_2]D^2$

Summary

- What is a decoder
- Truth table of a decoder
- Implementation of 1-to-2, 2-to-4, *n*-to-2^{*n*} decoder
 - Incremental design
 - Recursive design

1-bit Binary Adder Using decoder

Augend X

Addend Y

Sum

Binary Addition

11010011(UIU10(

1-bit Binary Adder

- Binary Adder
 - Logical functional block that performs addition
- 1-Bit Binary Adder: smallest building block of a multi-bit adder
 - Inputs \bullet Augend: X; Addend: Y; Previous Carry: Z
 - Outputs Sum bit: *S*; next carry: *C*

1. Specification

P3 Example 3d

Carries CZ I Input Output Augend Addend Sum

2. Formulation

X	Υ	Ζ	S	С
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Carries CZ I Input Output Augend Addend Sum

2. Formulation

X	Υ	Ζ	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

2. Formulation

X	Υ	Ζ	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum of Minterms

 $C = \Sigma m(3,5,6,7)$ $S = \Sigma m(1,2,4,7)$

3. Optimisation

X	Υ	Ζ	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum of Minterms

$C = \Sigma m(3,5,6,7)$ $S = \Sigma m(1,2,4,7)$

We can use decoders to implement the adder!

3. Optimisation

X	Υ	Ζ	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sum of Minterms

$C = \Sigma m(3,5,6,7)$ $S = \Sigma m(1,2,4,7)$

We can use decoders to implement the adder!

P3 4. Technology Mapping . 1 x 3-to-8 Decoder OR Gates Example 3d

Sum of Minterms

 $C = \Sigma m(3,5,6,7)$ $S = \Sigma m(1,2,4,7)$

Technology

