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Overview
• Focus: Logic Functions


• Architecture: Combinatory Logical Circuits


• Textbook v4: Ch3 3.6; v5: Ch3 3.1, 3.4


• Core Ideas:


1. Terminologies: Value-Fixing, Transferring, Inverting, Enabler


2. Decoder



Systematic Design Procedures
1. Specification: Write a specification for the circuit


2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions


3. Optimisation: Apply optimisation, minimise the number of logic gates and 
literals required


4. Technology Mapping: Transform design to new diagram using available 
implementation technology


5. Verification: Verify the correctness of the final design in meeting the 
specifications

Rev
iew

P0 
Review



Systematic Design Procedures

• Hierarchical Design


• Divide complex designs into smaller functional blocks, then apply the same 
5-step design procedures for each block


• Reusable, easier and more efficient Implementation
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Value-Fixing, Transferring, and 
Inverting
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① Value-Fixing: giving a constant value to a wire


• ; ;


② Transferring: giving a variable (wire) value from another variable (wire)


• ;


③ Inverting: inverting the value of a variable


•

F = 0 F = 1

F = X

F = X
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consequence, logic gates are not involved in the implementation of these operations. 
Inverting involves only one logic gate per variable, and enabling involves one or two 
logic gates per variable.

Value-Fixing, Transferring, and Inverting

If a single-bit function depends on a single variable X, four different functions are 
possible. Table 3-1 gives the truth tables for these functions. The !rst and last col-
umns of the table assign either constant value 0 or constant value 1 to the function, 
thus performing value !xing. In the second column, the function is simply the input 
variable X, thus transferring X from input to output. In the third column, the func-
tion is X, thus inverting input X to become output X.

The implementations for these four functions are given in Figure 3-7. Value !x-
ing is implemented by connecting a constant 0 or constant 1 to output F, as shown in 
Figure 3-7(a). Figure 3-7(b) shows alternative representations used in logic schemat-
ics. For the positive logic convention, constant 0 is represented by the electrical 
ground symbol and constant 1 by a power-supply voltage symbol. The latter symbol 
is labeled with either VCC or VDD. Transferring is implemented by a simple wire con-
necting X to F as in Figure 3-7(c). Finally, inverting is represented by an inverter 
which forms F = X from input X, as shown in Figure 3-7(d).

Multiple-Bit Functions

The functions de!ned so far can be applied to multiple bits on a bitwise basis. We can 
think of these multiple-bit functions as vectors of single-bit functions. For example, 
suppose that we have four functions, F3, F2, F1, and F0, that make up a four-bit func-
tion F. We can order the four functions with F3 as the most signi!cant bit and F0 the 

 TABLE 3-1
Functions of One Variable

X F = 0 F = X F = X F = 1

0 0 0 1 1
1 0 1 0 1

0

1

(a)

V

F ! 1

F ! 0

F ! 1

F ! 0

F ! X

F ! X

CC or VDD

(b)

X
(c)

X

(d)

 FIGURE 3-7
Implementation of Functions of a Single Variable X
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④ Multiple-bit Function 

• Functions we’ve seen so far has only one-bit output: 0/1


• Certain functions may have -bit output


• , each  is a one-bit function


• Curtain Motor Control Circuit: 

n

F(n − 1 : 0) = (Fn−1, Fn−2, . . . , F0) Fi

F = (FMotor1
, FMotor2

, FLight)
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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 FIGURE 3-8
Implementation of Multibit Rudimentary Functions
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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 FIGURE 3-8
Implementation of Multibit Rudimentary Functions
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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 FIGURE 3-8
Implementation of Multibit Rudimentary Functions
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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• Transferring function, but with an additional  signal acting as switchEN
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each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by 
a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders, 
one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm 
function using a single AND gate with more inputs. Unfortunately, as decoders 
become larger, this approach gives a high gate-input cost. In this section, we give 
a  procedure that uses design hierarchy and collections of AND gates to con-
struct any decoder with n inputs and 2n outputs. The resulting decoder has the 
same or a lower gate-input cost than the one constructed by simply enlarging each 
AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder 
and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms. 
Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line 
decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting 
structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-
ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND 
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A 2–to–4-Line Decoder
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each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by 
a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders, 
one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm 
function using a single AND gate with more inputs. Unfortunately, as decoders 
become larger, this approach gives a high gate-input cost. In this section, we give 
a  procedure that uses design hierarchy and collections of AND gates to con-
struct any decoder with n inputs and 2n outputs. The resulting decoder has the 
same or a lower gate-input cost than the one constructed by simply enlarging each 
AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder 
and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms. 
Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line 
decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting 
structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-
ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND 
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Summary

• What is a decoder


• Truth table of a decoder


• Implementation of 1-to-2, 2-to-4, -to- decoder


• Incremental design


• Recursive design
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1-bit Binary Adder
• Binary Adder


• Logical functional block that performs addition


• 1-Bit Binary Adder: smallest building block of a multi-bit adder


• Inputs 
Augend: ; Addend: ; Previous Carry: 


• Outputs 
Sum bit: ; next carry: 
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