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Overview
• Focus: Methodology


• Architecture: Combinatory Logical Circuits


• Textbook v4: Ch3 3.1, 3.2, 3.3; v5: Ch3 3.1, 3.2


• Core Ideas:


1. BCD-to-Seven-Segment Decoder


2. 4-bit Equity Comparator


3. Technology Mapping



Systematic Design Procedures
1. Specification: Write a specification for the circuit


2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions


3. Optimisation: Apply optimisation, minimise the number of logic gates and 
literals required


4. Technology Mapping: Transform design to new diagram using available 
implementation technology


5. Verification: Verify the correctness of the final design in meeting the 
specifications
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BCD-to-Seven-
Segment Decoder

Sum
mary

P1 
Example 3b

Ah, not again



LED Seven Segment Display

• LED: Light-Emitting Diodes


• A single digit display takes 7bit inputs 
(and an optional one for decimal point)

Exa
mple
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BCD to 7 Segment Display(s)

• BCD: Each digit is represented using 4bit binary int


• BCD-to-7-segment decoder 
A Combinational circuit that


• takes a decimal digit in BCD (4bit int ); and


• generates the appropriate control signals for the display 
unit 

A, B, C, D

(a, b, c, d, e, f, g)
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Input

1. Specification

• BCD: Each digit is represented using 4bit binary int


• BCD-to-7-segment decoder 
A Combinational circuit that


• takes a decimal digit in BCD (4bit int ); and


• generates the appropriate control signals for the display 
unit 

A, B, C, D

(a, b, c, d, e, f, g)

Exa
mple

P1 
Example 3b

Output

Output



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1
2
3
4
5
6
7
8
9

F B

CE

A

D



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2
3
4
5
6
7
8
9

B

C



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3
4
5
6
7
8
9

B

E

A

G

D



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1

4
5
6
7
8
9

B

C

A

G

D



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1

4 0 1 0 0 1 1 1 1

5
6
7
8
9

F B

C

G



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1

4 0 1 0 0 1 1 1 1

5 0 1 0 1 1 1 1 1 1

6
7
8
9

F

C

A

G

D



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1

4 0 1 0 0 1 1 1 1

5 0 1 0 1 1 1 1 1 1

6 0 1 1 0 1 1 1 1 1 1

7
8
9

F

CE

A

G

D



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1

4 0 1 0 0 1 1 1 1

5 0 1 0 1 1 1 1 1 1

6 0 1 1 0 1 1 1 1 1 1

7 0 1 1 1 1 1 1

8
9

B

C

A



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1

4 0 1 0 0 1 1 1 1

5 0 1 0 1 1 1 1 1 1

6 0 1 1 0 1 1 1 1 1 1

7 0 1 1 1 1 1 1

8 1 0 0 0 1 1 1 1 1 1 1

9

F B

CE

A

G

D



2. Formulation

Exa
mple

P1 
Example 3b

Output

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1

2 0 0 1 0 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1

4 0 1 0 0 1 1 1 1

5 0 1 0 1 1 1 1 1 1

6 0 1 1 0 1 1 1 1 1 1

7 0 1 1 1 1 1 1

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 1 1

F B

C

A

G

D



3. OptimisationP1 
Example 3b

Decimal A B C D a b c d e f g
0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1
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• Convert to Boolean 
expression


• Indie: 27 AND 
7 OR gates


• Shared: 14 AND 
7 OR gates



3. OptimisationP1 
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Exa
mple

COMBINATIONAL LOGIC DESIGN

plotting of the seven functions in map form is left as an exercise. One possible way
of simplifying the seven functions results in the following Boolean functions:

a !

b !

c !

d !

e !

f !

g !

Independent implementation of these seven functions requires 27 AND gates and
7 OR gates. However, by sharing the six product terms common to the different
output expressions, the number of AND gates can be reduced to 14 along with a
substantial savings in gate input cost. For example, the term  occurs in a, c,
d, and e. The output of the AND gate that implements this product term goes
directly to the inputs of the OR gates in all four functions. For this function, we
stop optimization with the two-level circuit and shared AND gates, realizing that it
might be possible to reduce the gate input cost even further by applying multiple-
level optimization. !

Most manufacturers of integrated circuits use the term “BCD–to–seven-
segment decoder” because this device decodes a binary code for a decimal digit.
However, it is actually a code converter that converts a four-bit decimal code to a
seven-bit code. The word “decoder” is usually reserved for another type of
circuit.

In general, the total number of gates can be reduced in a multiple-output
combinational circuit by using common terms of the output functions. The maps
of the output functions may help us find the common terms by finding identical
implicants from two or more maps. Some of the common terms may not be prime
implicants of the individual functions. The designer must be inventive and com-
bine squares in the maps in such a way as to create common terms. This can be
done more formally by using a procedure for simplifying multiple-output func-
tions. The prime implicants are defined not only for each individual function, but
also for all possible combinations of the output functions. These prime implicants
are formed by using the AND operator on every possible nonempty subset of the
output functions and finding the prime implicants of each of the results. Using
this entire set of prime implicants, we can employ a formal selection process to
find the optimum two-level multiple-output circuit. Such a procedure is imple-
mented in various forms in logic optimization software and is used to obtain the
equations in Example 2.

AC ABD B C D AB C" " "

A B A C D ACD AB C" " "

AB AD B C D AB C" " "

ACD A BC B C D AB C ABCD" " " "

ACD B C D"

ABC A C D ABD AB C" " "

ACD A BC ABC AB C" " "

B C D

���

• Convert to Boolean 
expression


• Indie: 27 AND 
7 OR gates


• Shared: 14 AND 
7 OR gates
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BCD to 7 Segment Display

• 'BCD-to-seven-segment decoder'


• 'decodes' binary code for decimal digit


• usually decoders mean something different, which we’ll 
discuss later

Exa
mple

P1 
Example 3b



4-bit Equity 
Comparator
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Ah, not again



4-bit Equity Comparator

• Compare two numbers


• Equal or not

Exa
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1. Specification

• Input: , 


• Output:  for equal,  for not

A3A2A1A0 B3B2B1B0

E = 1 0

Exa
mple

P2 
Example 3c



2. Formulation
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B3B2B1B0
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2. Formulation

• 2 things are happening
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2. Formulation

• 2 things are happening

• We need to compare pairs of binary values and see if they are equal
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2. Formulation

• 2 things are happening

• We need to compare pairs of binary values and see if they are equal

• We need to combine the comparison of all these different bits to make up E
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B3B2B1B0

A3A2A1A0

Y/N Y/N Y/N Y/N E



Hierarchical Design
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Hierarchical Design

• "divide-and-conquer"
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Hierarchical Design
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• Circuit is broken up into individual functional pieces (blocks)
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Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour
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Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour

• A single block can be reused multiple times to simplify design process
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Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour

• A single block can be reused multiple times to simplify design process

• If a single block is too complex, it can be further divided into smaller 
blocks, to allow for easier designs
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3. Optimisation

• 2 things are happening


• We need to compare pairs of binary values and see if they are equal


• We need to combine the comparison of all these different bits to make up E
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MXMXMX



3. Optimisation
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cumbersome and K-maps impossible. Thus, direct application of the basic combina-
tional design approach, as used in Chapter 2, is dif!cult.

EXAMPLE 3-1  Design of a 4-Bit Equality Comparator

Specification:  An equality comparator is a circuit that compares two binary vectors 
to determine whether they are equal or not. The inputs to this speci!c circuit consist 
of two vectors: A(3:0) and B(3:0). Vector A consists of four bits, A(3), A(2), A(1), and 
A(0), with A(3) as the most signi!cant bit. Vector B has a similar description with B 
replaced by A. The output of the circuit is a single-bit variable E. Output E is equal to 
1 if vectors A and B are equal and equal to 0 if vectors A and B are unequal.

formulation:  The formulation attempts to bypass the use of a truth table due to 
its size. In order for A and B to be equal, the bit values in each of the respective 
positions, 3 down to 0, of A and B must be equal. If all of the bit positions for A and 
B contain equal values in every position, then E = 1—otherwise, E = 0. Intuitively, 
we can see from this formulation of the problem that the circuit can be developed as 
a simple 2-level hierarchy with the complete circuit at the top level and !ve circuits 
at the bottom level. Since comparison of a bit from A and the corresponding bit from 
B must be done in each of the bit positions, we can decompose the problem into four 
1-bit comparison circuits MX and an additional circuit ME that combines the four 
comparison-circuit outputs to obtain E. A logic diagram of the hierarchy showing 
the interconnection of the !ve blocks is shown in Figure 3-1(a).
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 FIGURE 3-1
Hierarchical Diagram for a 4-Bit Equality Comparator
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to determine whether they are equal or not. The inputs to this speci!c circuit consist 
of two vectors: A(3:0) and B(3:0). Vector A consists of four bits, A(3), A(2), A(1), and 
A(0), with A(3) as the most signi!cant bit. Vector B has a similar description with B 
replaced by A. The output of the circuit is a single-bit variable E. Output E is equal to 
1 if vectors A and B are equal and equal to 0 if vectors A and B are unequal.

formulation:  The formulation attempts to bypass the use of a truth table due to 
its size. In order for A and B to be equal, the bit values in each of the respective 
positions, 3 down to 0, of A and B must be equal. If all of the bit positions for A and 
B contain equal values in every position, then E = 1—otherwise, E = 0. Intuitively, 
we can see from this formulation of the problem that the circuit can be developed as 
a simple 2-level hierarchy with the complete circuit at the top level and !ve circuits 
at the bottom level. Since comparison of a bit from A and the corresponding bit from 
B must be done in each of the bit positions, we can decompose the problem into four 
1-bit comparison circuits MX and an additional circuit ME that combines the four 
comparison-circuit outputs to obtain E. A logic diagram of the hierarchy showing 
the interconnection of the !ve blocks is shown in Figure 3-1(a).
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2. Cancel all inverter pairs.

3. Without changing the logic function, (a) “push” all inverters lying between 
(i) either a circuit input or a driving NAND (NOR) gate output and (ii) the 
driven NAND (NOR) gate inputs toward the driven NAND (NOR) gate in-
puts. Cancel pairs of inverters in series whenever possible during this step. 
(b) Replace inverters in parallel with a single inverter that drives all of the 
outputs of the parallel inverters. (c) Repeat (a) and (b) until there is at most 
one inverter between the circuit input or driving NAND (NOR) gate output 
and the attached NAND (NOR) gate inputs.

In Figure 3-3(c), the rule for pushing an inverter through a “dot” is illustrated. 
The inverter on the input line to the dot is replaced with inverters on each of the 

 FIGURE 3-3
Mapping of AND Gates, OR Gates, and Inverters to 
NAND Gates, NOR Gates, and Inverters

...
...

...
...

(a) Mapping to NAND gates

...

...
...

...

(b) Mapping to NOR gates

...
...

(c) Pushing an inverter through a “dot”

(d) Canceling inverter pairs
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output lines from the dot. The cancelation of pairs of inverters in Figure 3-3(d) is 
based on the Boolean algebraic identity

X = X

The next example illustrates this procedure for NAND gates.

EXAMPLE 3-2 Implementation with NAND Gates

Implement the following optimized function with NAND gates:

F = AB  + (AB)C + (AB)D + E

The AND, OR, inverter implementation is given in Figure 3-4(a). In Figure 3-4(b), 
step 1 of the procedure has been applied, replacing each AND gate and OR gate 
with its equivalent circuit using NAND gates and inverters from Figure 3-3(a). 
Labels appear on dots and inverters to assist in the explanation. In step 2, the inverter 
pairs (1, 2) and (3, 4), cancel, giving direct connections between the corresponding 
NAND gates in Figure 3-4(d). As shown in Figure 3-4(c), inverter 5 is pushed through 
X and cancels with inverters 6 and 7, respectively. This gives direct connections 
between the corresponding NAND gates in Figure 3-4(d). No further steps can be 
applied, since inverters 8 and 9 cannot be paired with other inverters and must 
remain in the !nal mapped circuit in Figure 3-4(d). The next example illustrates this 
procedure for NOR gates. 
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remain in the !nal mapped circuit in Figure 3-4(d). The next example illustrates this 
procedure for NOR gates. 
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 FIGURE 3-4
Solution to Example 3-2 !
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Verification

• Manual


• Use the truth table, row by row


• Auto


• Use computer simulation to go through the truth table
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