
27.07.20 12:40CSCI 150
Introduction to Digital and Computer

System Design
Lecture 5: Registers I

Jetic Gū

2020 Summer Semester (S2)

Overview
• Focus: Fundamentals of Complex Digital Circuit Design

• Architecture: von Neumann

• Textbook v4: Ch7 7.1 7.2; v5: Ch6 6.1 6.2

• Core Ideas:

1. What are Registers

2. Register Transferring Operations and Circuit

Sequential Circuits

Rev
iew

P0
Review

• Synchronous Sequential Circuit  
Signals arrive at discrete instants of time,
outputs at next time step

• Has Clock

• Asynchronous Sequential Circuit  
Signals arrive at any instant of time,
outputs when ready

• May not have Clock

Your Favourite
Combinational

Circuit

n m
Inputs Outputs

Storage Unit

Statet + 1Statet

Clock

200 CHAPTER 4 / SEQUENTIAL CIRCUITS

the clock pulses are applied with other signals that specify the required change in the
storage elements. The outputs of storage elements can change their value only in the
presence of clock pulses. Synchronous sequential circuits that use clock pulses as
inputs for storage elements are called clocked sequential circuits. These are the types
of circuits most frequently encountered in practice, since they operate correctly in
spite of wide differences in circuit delays and are relatively easy to design.

The storage elements used in the simplest form of clocked sequential circuits
are called !ip- !ops. For simplicity, assume circuits with a single clock signal. A
 !ip- !op is a binary storage device capable of storing one bit of information and hav-
ing timing characteristics to be de"ned in Section 4-9. The block diagram of a syn-
chronous clocked sequential circuit is shown in Figure 4-3. The !ip- !ops receive their
inputs from the combinational circuit and also from a clock signal with pulses that
occur at "xed intervals of time, as shown in the timing diagram. The !ip- !ops can
change state only in response to a clock pulse. For a synchronous operation, when a
clock pulse is absent, the !ip- !op outputs cannot change even if the outputs of the
combinational circuit driving their inputs change in value. Thus, the feedback loops
shown in the "gure between the combinational logic and the !ip- !ops are broken.
As a result, a transition from one state to the other occurs only at "xed time intervals
dictated by the clock pulses, giving synchronous operation. The sequential circuit
outputs are shown as outputs of the combinational circuit. This is valid even when
some sequential circuit outputs are actually the !ip- !op outputs. In this case, the
combinational circuit part between the !ip- !op outputs and the sequential circuit
outputs consists of connections only.

A !ip- !op has one or two outputs, one for the normal value of the bit stored
and an optional one for the complemented value of the bit stored. Binary informa-
tion can enter a !ip- !op in a variety of ways, a fact that gives rise to different types of
 !ip- !ops. Our focus will be on the most prevalent type used today, the D !ip- !op.
Other !ip- !op types, such as the JK and T !ip- !ops, are described in the online mate-
rial available at the Companion Website. In preparation for studying !ip- !ops and
their operation, necessary groundwork is presented in the next section on latches,
from which the !ip- !ops are constructed.

(b) Timing diagram of clock pulses

(a) Block diagram

Inputs Combinational
circuit

Clock pulses

Outputs

Flip-flops

 FIGURE 4-3
Synchronous Clocked Sequential Circuit

M04_MANO0637_05_SE_C04.indd 200 23/01/15 1:54 PM

What are Registers?

Sum
mary

P1
Registers

Definitions;

Register Loading; Parallel Loading

CPU

Computer

Rev
iew

P1
Registers

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Clock

200 CHAPTER 4 / SEQUENTIAL CIRCUITS

the clock pulses are applied with other signals that specify the required change in the
storage elements. The outputs of storage elements can change their value only in the
presence of clock pulses. Synchronous sequential circuits that use clock pulses as
inputs for storage elements are called clocked sequential circuits. These are the types
of circuits most frequently encountered in practice, since they operate correctly in
spite of wide differences in circuit delays and are relatively easy to design.

The storage elements used in the simplest form of clocked sequential circuits
are called !ip- !ops. For simplicity, assume circuits with a single clock signal. A
 !ip- !op is a binary storage device capable of storing one bit of information and hav-
ing timing characteristics to be de"ned in Section 4-9. The block diagram of a syn-
chronous clocked sequential circuit is shown in Figure 4-3. The !ip- !ops receive their
inputs from the combinational circuit and also from a clock signal with pulses that
occur at "xed intervals of time, as shown in the timing diagram. The !ip- !ops can
change state only in response to a clock pulse. For a synchronous operation, when a
clock pulse is absent, the !ip- !op outputs cannot change even if the outputs of the
combinational circuit driving their inputs change in value. Thus, the feedback loops
shown in the "gure between the combinational logic and the !ip- !ops are broken.
As a result, a transition from one state to the other occurs only at "xed time intervals
dictated by the clock pulses, giving synchronous operation. The sequential circuit
outputs are shown as outputs of the combinational circuit. This is valid even when
some sequential circuit outputs are actually the !ip- !op outputs. In this case, the
combinational circuit part between the !ip- !op outputs and the sequential circuit
outputs consists of connections only.

A !ip- !op has one or two outputs, one for the normal value of the bit stored
and an optional one for the complemented value of the bit stored. Binary informa-
tion can enter a !ip- !op in a variety of ways, a fact that gives rise to different types of
 !ip- !ops. Our focus will be on the most prevalent type used today, the D !ip- !op.
Other !ip- !op types, such as the JK and T !ip- !ops, are described in the online mate-
rial available at the Companion Website. In preparation for studying !ip- !ops and
their operation, necessary groundwork is presented in the next section on latches,
from which the !ip- !ops are constructed.

(b) Timing diagram of clock pulses

(a) Block diagram

Inputs Combinational
circuit

Clock pulses

Outputs

Flip-flops

 FIGURE 4-3
Synchronous Clocked Sequential Circuit

M04_MANO0637_05_SE_C04.indd 200 23/01/15 1:54 PM

CPU

Computer

Rev
iew

P1
Registers

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1:
X1: 1 (00010001)
X2: 1 (00100001)
X3: X1+X2 (01110110)

M1: 1 (00000001)

1+1=2

M3: 2 (00000010)

CPU exe.
M2: 1 (00000001)

A very rough example

Clock

200 CHAPTER 4 / SEQUENTIAL CIRCUITS

the clock pulses are applied with other signals that specify the required change in the
storage elements. The outputs of storage elements can change their value only in the
presence of clock pulses. Synchronous sequential circuits that use clock pulses as
inputs for storage elements are called clocked sequential circuits. These are the types
of circuits most frequently encountered in practice, since they operate correctly in
spite of wide differences in circuit delays and are relatively easy to design.

The storage elements used in the simplest form of clocked sequential circuits
are called !ip- !ops. For simplicity, assume circuits with a single clock signal. A
 !ip- !op is a binary storage device capable of storing one bit of information and hav-
ing timing characteristics to be de"ned in Section 4-9. The block diagram of a syn-
chronous clocked sequential circuit is shown in Figure 4-3. The !ip- !ops receive their
inputs from the combinational circuit and also from a clock signal with pulses that
occur at "xed intervals of time, as shown in the timing diagram. The !ip- !ops can
change state only in response to a clock pulse. For a synchronous operation, when a
clock pulse is absent, the !ip- !op outputs cannot change even if the outputs of the
combinational circuit driving their inputs change in value. Thus, the feedback loops
shown in the "gure between the combinational logic and the !ip- !ops are broken.
As a result, a transition from one state to the other occurs only at "xed time intervals
dictated by the clock pulses, giving synchronous operation. The sequential circuit
outputs are shown as outputs of the combinational circuit. This is valid even when
some sequential circuit outputs are actually the !ip- !op outputs. In this case, the
combinational circuit part between the !ip- !op outputs and the sequential circuit
outputs consists of connections only.

A !ip- !op has one or two outputs, one for the normal value of the bit stored
and an optional one for the complemented value of the bit stored. Binary informa-
tion can enter a !ip- !op in a variety of ways, a fact that gives rise to different types of
 !ip- !ops. Our focus will be on the most prevalent type used today, the D !ip- !op.
Other !ip- !op types, such as the JK and T !ip- !ops, are described in the online mate-
rial available at the Companion Website. In preparation for studying !ip- !ops and
their operation, necessary groundwork is presented in the next section on latches,
from which the !ip- !ops are constructed.

(b) Timing diagram of clock pulses

(a) Block diagram

Inputs Combinational
circuit

Clock pulses

Outputs

Flip-flops

 FIGURE 4-3
Synchronous Clocked Sequential Circuit

M04_MANO0637_05_SE_C04.indd 200 23/01/15 1:54 PM

T1
T2
T3

T1 T2 T3

von Neumann CPU
• Control Unit

• Determine sequence of data-processing operations performed by the
datapath

• Datapath

• Processing logic units: Adder, Subtractor, Shifter, Counter, etc.

• Registers: Storage of temporary information, basic components of the
digital system

Conc
ep

t

P1
Registers

• -bit register: uses flip-flops 
stores bits of information
n n

n

Register

Conc
ep

t

P1
Registers

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

Register

Conc
ep

t

P1
Registers

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

• An array of flip-flops with 
reset

D

• -bit register: uses flip-flops 
stores bits of information
n n

n

Register

Conc
ep

t

P1
Registers

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

• An array of flip-flops with 
reset

D

• -bit register: uses flip-flops 
stores bits of information
n n

n

• Clear: set register to all s0

Register

Conc
ep

t

P1
Registers

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

• An array of flip-flops with 
reset

D

• -bit register: uses flip-flops 
stores bits of information
n n

n

• Clear: set register to all s0

• Loading: set register to D3:0
Triggered by Load or Clock

Clock

Register Operations

• All registers are most likely wired to one Clock

• Loading a register: assigning new values to all -bits of a register

• Clearing a register: change all -bits of a register to s

n

n 0

Conc
ep

t

P1
Registers

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

Clock

What if we don’t want to
change the value of a register?

• Clock: generates a constant train of pulses 
triggering the C of each registers

• Clock gating (Bad Idea)

• Adding an Enabler to each C of each register

• Bad idea: leads to different propagation delay
between the CLK and the Input D

Conc
ep

t

P1
Registers

En

CLK

6-1 / Registers and Load Enable 325

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train
of clock pulses. The pulses are applied to all !ip-!ops and registers in the system. In
effect, the master clock acts like a heart that supplies a constant beat to all parts of
the system. For the design in Figure 6-1(a), the clock can be prevented from reaching
the clock input to the circuit if the contents of the register are to be left unchanged.
Thus, a separate control signal is used to control the clock cycles during which clock
pulses are to have an effect on the register. The clock pulses are prevented from
reaching the register when its content is not to be changed. This approach can be
implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

M06_MANO0637_05_SE_C06.indd 325 21/01/15 9:49 AM

What if we don’t want to
change the value of a register?

• Clock: generates a constant train of pulses 
triggering the C of each registers

• Use flip-flops with built-in Enabler (Correct!)

• The CLK goes directly to C

• Input combined with signal 
Ensure same propagation delay design

D

D EN

Conc
ep

t

P1
Registers

6-2 / Register Transfers 327

done simultaneously for all four bits during a single positive pulse transition. This
method of transfer is traditionally preferred over clock gating, since it avoids clock
skew and the potential for malfunctions of the circuit.

6-2 REGISTER TRANSFERS

A digital system is a sequential circuit made up of interconnected !ip-!ops and gates.
In Chapter 4, we learned that sequential circuits can be speci"ed by means of state
tables. To specify a large digital system with state tables is very dif"cult, if not impos-
sible, because the number of states is prohibitively large. To overcome this dif"culty,
digital systems are designed using a modular, hierarchical approach. The system is
partitioned into subsystems or modules, each of which performs some functional
task. The modules are constructed hierarchically from functional blocks such as reg-
isters, counters, decoders, multiplexers, buses, arithmetic elements, !ip-!ops, and
primitive gates. The various subsystems communicate with data and control signals
to form a digital system.

In most digital system designs, we partition the system into two types of mod-
ules: a datapath, which performs data-processing operations, and a control unit,

D

C
EN

(b)(a)

D

C
D Flip-flop with enable

EN
D
C

Q

(c)

D

C
EN

D

C
EN

D

C
EN

D

C
EN

Q0

Q1

Q2D2

D1

D0

Q3D3
Load

Clock

 FIGURE 6-2
4-Bit Register with Parallel Load

M06_MANO0637_05_SE_C06.indd 327 21/01/15 9:49 AM

6-2 / Register Transfers 327

done simultaneously for all four bits during a single positive pulse transition. This
method of transfer is traditionally preferred over clock gating, since it avoids clock
skew and the potential for malfunctions of the circuit.

6-2 REGISTER TRANSFERS

A digital system is a sequential circuit made up of interconnected !ip-!ops and gates.
In Chapter 4, we learned that sequential circuits can be speci"ed by means of state
tables. To specify a large digital system with state tables is very dif"cult, if not impos-
sible, because the number of states is prohibitively large. To overcome this dif"culty,
digital systems are designed using a modular, hierarchical approach. The system is
partitioned into subsystems or modules, each of which performs some functional
task. The modules are constructed hierarchically from functional blocks such as reg-
isters, counters, decoders, multiplexers, buses, arithmetic elements, !ip-!ops, and
primitive gates. The various subsystems communicate with data and control signals
to form a digital system.

In most digital system designs, we partition the system into two types of mod-
ules: a datapath, which performs data-processing operations, and a control unit,

D

C
EN

(b)(a)

D

C
D Flip-flop with enable

EN
D
C

Q

(c)

D

C
EN

D

C
EN

D

C
EN

D

C
EN

Q0

Q1

Q2D2

D1

D0

Q3D3
Load

Clock

 FIGURE 6-2
4-Bit Register with Parallel Load

M06_MANO0637_05_SE_C06.indd 327 21/01/15 9:49 AM

Why can’t we use a regular enabler at ?D

Registers

• What is a register?

• Basic Functions of a single Register

• Loading: set values to input

• Clearing: set values to

• Enabling: preserving existing values

0

Rev
iew

P1
Registers

x86 Registers

Sum
mary

P2
Example

And how addition is performed on your Computer
CPU

Common CPU Processor
Architectures

• These are all von Neumann architecture designs

• X86 architecture (Intel CPUs, AMD CPUs)

• X86-64 architecture (64bit version of X86)

• ARM (iPhone, iPad, most Android devices)

• MIPS (Others, including instructional)

Conc
ep

t

P2
Example

Intel 8086 CPU

8 GPRs,
6 Seg Regs,
1 Flag Reg,
1 Instruc. Reg

X86 CPU Registers
• These registers are located on the CPU chips (in Datapath)

• 8 General-Purpose Registers (GPRs)

• AX: Accumulator register. Used in arithmetic operations

• BX: Base register. Used as a pointer to data

• CX: Counter register. Used in shift/rotate instructions and loops.

• DX: Data register. Used in arithmetic operations and I/O operations.

• ……

Conc
ep

t

P2
Example

REG AX
Q

D
REG BX

Q
D

REG CX
Q

D
REG DX

Q
D

……

• 12 + 35

• Uses AX, BX: Cleared to 0

1. Load AX with 12

2. Load BX with 35

3. Perform addition with Adder-
Subtractor, store result in AX

X86 Addition

Dem
o

P2
Example

Assembly
Language

MOV AX, 000Ch

MOV BX, 0023h

ADD AX, BX

REG AX
Q

D

REG BX
Q

D

0000h
000Ch

000Ch

Adder-
Subtractor

002Fh

002Fh
002Fh

0000h
0023h

0023h

1. Load AX with 12 (000Ch)

2. Load BX with 35 (0023h)

3. Perform Add with Adder-
Subtractor, Load result to AX

Hardware

Datapath and Control Unit

Conc
ep

t

P2
Example

• Control Unit at each time step, provide

• Operation Code 
e.g. mov (66b8, etc.), add (6601, etc.)

• Parameters 
e.g. ax, bx, 12, 35

• Datapath

• Select Register for Input and Output (Multiplexer)

• Feed input into Register or Functional Blocks (Adder-Subtractor)

Datapath

Datapath and Control Unit
1. ALU connected to Reg for 1st input

2. ALU connected to Reg for 2nd input

3. ALU connected to Reg to store result

4. CU tells ALU which register to take as 1st input

5. CU tells ALU which register to take as 2st input

6. CU tells ALU which operation to do

7. CU tells which Reg to store result in 
Using decoder and EN on each Register

Conc
ep

t

P2
Example

Adder-
Subtractor

(ALU)

Control Unit
(CU)

Register Array (Reg)

REG AX
Q

D
REG BX

Q
D

REG CX
Q

D
REG DX

Q
D

……

1

2

4
5

6

3

Red: Address
Green: Mode

7Dec

Register Transferring

Sum
mary

P3
Transferring

Microoperations; Transferring Operations

Register Operations

• Movement of data stored in registers and Processing performed on the data

• Components

• set of registers in the system

• operations performed on the data

• control that supervises the sequence of operations in the system

Conc
ep

t

P3
Transferring

Microoperation

• Microoperation: An elementary operation performed on data stored in
registers

• Single Register (Transfer Operations): load, clear, shift, count, etc.

• Multiple Registers: add, subtract, etc.

Conc
ep

t

P3
Transferring

Register Transfer VHDLP3
Transferring

Conc
ep

t

Operator Example

Assignment <= ax <= 12h

Reg. Transfer <= ax <= bx

Addition + ax + bx

Subtration - ax - bx

Shift Left sll ax sll 2

Shift Right srl ax srl 2

Operator Example

Bitwise AND and ax and bx

Bitwise OR or ax or bx

Bitwise NOT not not ax

Bitwise XOR xor ax xor bx

Vectors ax(3 down to 0) ax(3 down to 0)

Concatenate & ax(7 down to 4)
&ax(3 down to 0)

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0000 1100
bx: 0001 0010
cx: 0001 1110
dx: 0000 0110

Exa
mple

P3
Transferring

1) ax <= 12
2) bx <= 18
3) cx <= ax + bx
4) dx <= bx - ax

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0000 1100
bx: 0011 0000
cx: 0110 0000
dx: 0000 0110

Exa
mple

P3
Transferring

1) ax <= 12
2) bx <= ax sll 2
3) cx <= ax sll 3
4) dx <= ax srl 1

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0000 1100
bx: 0001 0100
cx: 0000 0100
dx: 0001 1100

Exa
mple

P3
Transferring

1) ax <= 12
2) bx <= 20
3) cx <= ax and bx
4) dx <= ax or bx

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0000 1100
bx: 0001 0100
cx: 1111 0011
dx: 0001 1000

Exa
mple

P3
Transferring

1) ax <= 12
2) bx <= 20
3) cx <= not ax
4) dx <= ax xor bx

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0000 1100
bx: 0001 0100
cx: 0000 0011
dx: 0000 0001
bx: 0011 0001

Exe
rci

se

P3
Transferring

1) ax <= 12
2) bx <= 20
3) cx <= ax(5 down to 2)
4) dx <= bx(7 down to 4)
5) bx <= ax(5 down to 2) & bx(7 down to 4)

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0000 1000
bx: 0001 0111
cx: 0001 1000
dx: 0100 0000

Exe
rci

se

P3
Transferring

1) ax <= 8
2) bx <= 23
3) cx <= bx(7 down to 4) & a(3 down to 0)
4) dx <= ax(4 down to 1) sll 4

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0000 1101
bx: 0001 1011
cx: 0000 0110
dx: 1111 0000

Exe
rci

se

P3
Transferring

1) ax <= 13
2) bx <= 27
3) cx <= bx srl 2
4) dx <= (ax and bx) xor (not cx)

Register Transfer VHDL

• What are the binary values after these operations? (Assuming 8bit registers)

• Answer: 
ax: 0010 1110
bx: 0000 1100
cx: (0000 1011) or (0101 1100): (0101 1111)
dx: 0000 1100

Exe
rci

se

P3
Transferring

1) ax <= 2Eh
2) bx <= ax(7 down to 4) xor ax(3 down to 0)
3) cx <= (ax slr 2) or (ax sll 1)
4) dx <= bx and cx

Register Transfer Operations

Rev
iew

P3
Transferring

Operator Example

Assignment <= ax <= 12h

Reg. Transfer <= ax <= bx

Addition + ax + bx

Subtration - ax - bx

Shift Left sll ax sll 2

Shift Right srl ax srl 2

Operator Example

Bitwise AND and ax and bx

Bitwise OR or ax or bx

Bitwise NOT not ax not bx

Bitwise XOR xor ax xor bx

Vectors ax(3 down to 0) ax(3 down to 0)

Concatenate & ax(7 down to 4)
&ax(3 down to 0)

