CSCI 150
Introduction to Digital and Computer
System Design
Lecture 5: Registers |

Jetic Gu
2020 Summer Semester (S2)

Overview

Focus: Fundamentals of Complex Digital Circuit Design
Architecture: von Neumann

Textbook v4: Ch7 7.1 7.2; v5: Cht 6.1 6.2

Core ldeas:

1. What are Registers

2. Register Transferring Operations and Circuit

Sequential Circuits

e Synchronous Sequential Circuit
Signals arrive at discrete instants of time, Your Favourite

outputs at next time step Inputs Combinational Outputs
e Has Clock
e Asynchronous Sequential Circuit State? Stater + |

Signals arrive at any instant of time,

outputs when ready o -
orage Uni

 May not have Clock Clock---im-

What are Registers?

Definitions;
Register Loading; Parallel Loading

P1

Registers

Control
Unit

A

Input/Output §
devices

Clock---

Datapath

also called arithmetic unit, logical unit, etc.

1. Von Neumann Architecture

Computer

A very rough example

Calculate 1+1:
X1:1 00010001
X2: 1 (00100001)
X3: X1+X2 (01110110)

Input/Output §
devices

CPU

M1:1 (00000001)

T1

T2
T3

M2: 1 (00000001)
M3: 2 (00000010)

Control
Unit

A

Datapath

also called arithmetic unit, logical unit, etc.

1. Von Neumann Architecture

von Neumann CPU

e Control Unit

e Determine sequence of data-processing operations performed by the
datapath

e Datapath

* Processing logic units: Adder, Subtractor, Shifter, Counter, etc.

 Registers: Storage of temporary information, basic components of the
digital system

Register

e n-bit reqgister: uses n flip-flops
stores n bits of information

Register N 1o

Clock 9 —=C
—5—
D, D Q
& C
e n-bit reqgister: uses n flip-flops E%*
stores n bits of information D, D Q,
o > C
e An array of D flip-flops with
reset
D;

Register .

Clock o
Clear
Dy
e n-bit register: uses n flip-flops I
stores n bits of information
D,
e An array of D flip-flops with :
reset
e Clear: set register to all Os D:

Register

e n-bit reqgister: uses n flip-flops
stores n bits of information

e An array of D flip-flops with
reset

e Clear: set register to all Os

e Loading: set register to D;.
Triggered by Load or Clock

ns

Clock

222 Register Operatio

o All registers are most likely wired to one Clock

e Loading a register: assigning new values to all n-bits of a register

e Clearing a register: change all n-bits of a register to Os

What if we don’t want to
change the value of a register?

P1
Registers

e Clock: generates a constant train of pulses
triggering the C of each registers

e Clock gating
e Adding an Enabler to each C of each register

e Bad idea: leads to different propagation delay
between the CLK and the Input D

What if we don’t want to
change the value of a register?

P1
Registers

e Clock: generates a constant train of pulses D
triggering the C of each registers EN
>C [

e Use D flip-flops with built-in Enabler (Correct!)

e The CLK goes directly to C

I
[
I
e Input D combined with EN signal EN : | [: Dl::

Ensure same propagation delay design .
C

[
I
Why can’t we use a regular enabler at D? ‘:

D Flip-flop with enable

Registers

e What is a register?
e Basic Functions of a single Register

e Loading: set values to input

e Clearing: set values to ()

e Enabling: preserving existing values

x86 Registers

And how addition is performed on your Computer
CPU

Common CPU Processor
Architectures

e These are all von Neumann architecture designs
e X86 architecture (Intel CPUs, AMD CPUs)
e X86-64 architecture (64bit version of X86)

e ARM (iPhone, iPad, most Android devices)

e MIPS (Others, including instructional)

X86 CPU Registers

Intel 8086 CPU

e These registers are located on the CPU chips (in Datapath)

8 GPRs,
e 8 General-Purpose Registers (GPRs) 6 Seg Regs,
1 Flag Reg,

: : : : . 1 Instruc. Reg
e AX: Accumulator register. Used in arithmetic operations

e BX: Base register. Used as a pointer to data
e CX: Counter register. Used in shift/rotate instructions and loops.

e DX: Data register. Used in arithmetic operations and |/O operations.

X386 Addition

f:ﬁ;::;he’ Hardware
e 12 + 35
e Uses AX, BX: Clearedto 0 ~ 002em REG AX
| ~ Q O02Fh - - ¥
1. Load AX with 12 (000Ch) MOV AX, 000Ch |, :
- i 0023n— 0 T BXQ 0023h- - :
2. Load BX with 35 (0023h) MOV BX, 0023h | = g
| ADD AX, BX || ooom BOEE 5
3. Perform Add with Adder- Subtractor
Subtractor, Load result to AX

Datapath and Control Unit

e Control Unit at each time step, provide

e Operation Code
e.g. mov (66b8, etc.), add (6601, etc.)

e Parameters
e.g. ax, bx, 12, 35

e Datapath

e Select Register for Input and Output (Multiplexer)

e Feed input into Register or Functional Blocks (Adder-Subtractor)

Datapath and Control Unit

1. ALU connected to Reg for 1st input

2. ALU connected to Reg for 2nd input

3. ALU connected to Reg to store result

4. CU tells ALU which register to take as 1st input
5. CU tells ALU which register to take as 2st input
6. CU tells ALU which operation to do

/. CU tells which Reg to store result in
Using decoder and EN on each Register

Red: Address Control Unit
Green: Mode (CU)

Datapath

Register Array (Reg)

Adder-
Subtractor
(ALU)

Register Iransferring

Microoperations; Transferring Operations

Register Operations

e Movement of data stored in registers and Processing performed on the data
e Components

e set of registers in the system

e operations performed on the data

e control that supervises the sequence of operations in the system

Microoperation

* Microoperation: An elementary operation performed on data stored In
registers

e Single Register (Transfer Operations): 1oad, clear, shift, count, etc.

e Multiple Registers: add, subtract, etc.

Register Transfer VHDL

Operator Example Operator

ax and bx

Assignment <= ax <= 12h Bitwise AND

Reg. Transfer <= ax <= bx Bitwise OR or ax or bx
Addition t+ ax + bx Bitwise NOT not not ax
Subtration — ax = bx Bitwise XOR XOr ax Xor bx
Shift Left sll ax sll 2 Vectors ax (3 down to 0) ax(3 down to 0)

Shift Right srl TNt BB Concatenate & ot S o 8

Register Transfer VHDL

1) ax <= 17/
2) bx <= 18
3) cx <= ax + bx
4) dx <= bx - ax

e What are the binary values after these operations? (Assuming 8bit registers)

e Answer:
ax: 0000 1100

bx: 0001 0010
cx: 0001 1110
dx: 0000 0110

Register Transfer VHDL

ax <= 17

bx <= ax sll 2
cx <= ax sll 3
dx <= ax srl 1

e What are the binary values after these operations? (Assuming 8bit registers)

e Answer:
ax: 0000 1100

bx: 0011 0000
cx: 0110 0000
dx: 0000 0110

Register Transfer VHDL

1) ax <= 12
2) bx <= 20
3) cx <= ax and bx
4) dx <= ax or Dbx

e What are the binary values after these operations? (Assuming 8bit registers)

e Answer:
ax: 0000 1100
bx: 0001 0100
cx: 0000 0100
dx: 0001 1100

Register Transfer VHDL

ax <= 17

bx <= 20

cx <= not ax

dx <= ax Xor bx

e What are the binary values after these operations? (Assuming 8bit registers)

e Answer:
ax: 0000 1100

bx: 0001 0100
cx: 1111 0011
dx: 0001 1000

Register Transfer VHDL

1) ax <= 12

2) bx <= 20

3) cx <= ax (b down to 2)

4) dx <= bx (/7 down to 4)

D) bx <= ax (b down to 2) & bx (/7 down to 4)

e What are the binary values after these operations? (Assuming 8bit registers)

e Answer:
ax: 0000 1100

bx: 0001 0100
cx: 0000 0011
dx: 0000 0001
bx: 0011 0001

Register Transfer VHDL

ax <= 8

bx <= 23

cx <= bx (7 down to 4) & a(3 down to 0)
dx <= ax (4 down to 1) sll 4

e What are the binary values after these operations”? (Assuming 8bit registers)

e Answer:
ax: 0000 1000

bx: 0001 0111
cx: 0001 1000
dx: 0100 0000

Register Transfer VHDL

1) ax <= 13

2) bx <= 27

3) cx <= bx srl

4) dx <= (ax and bx) xor (not cx)

e What are the binary values after these operations”? (Assuming 8bit registers)

e Answer:
ax: 0000 1101
bx: 0001 1011
cx: 0000 0110
dx: 1111 0000

Register Transfer VHDL

ax <= 2FEh

bx <= ax (7 down to 4) xor ax (3 down to 0)
cx <= (ax slr 2) or (ax sll 1)

dx <= bx and cx

e What are the binary values after these operations”? (Assuming 8bit registers)

e Answer:
ax: 0010 1110

bx: 0000 1100
cx: (0000 1011) or (0101 1100): (0101 1111)
dx: 0000 1100

Register Transfer Operations

Assignment
Reg. Transfer
Addition
Subtration

Shift Left

Shift Right

Operator

sll

srl

ax <= 12h

Operator

ax and bx

Bitwise AND

ax <= bx Bitwise OR or ax or bx
ax + bx Bitwise NOT not ax not bx
ax - bx Bitwise XOR XOY axX XOor bx
ax sll 2 Vectors ax (3 down to 0) ax(3 down to 0)
ax srl 2 Concatenate & ox oo o

&ax (3 down to 0)

