

CSCI 150 Introduction to Digital and Computer System Design Midterm Review I

Jetic Gū 2020 Summer Semester (S2)

Overview

- Focus: Review
- Architecture: Combinational Logic Circuit
- Textbook v4: Ch1-4; v5: Ch1-3
- Core Ideas:
 - 1. Digital Information Representation (Lecture 1)
 - 2. Combinational Logic Circuits (Lecture 2)
 - 3. Combinational Functional Blocks, Arithmetic Blocks (Lecture 3)

Lecture 1: Digital Information Representation

Analog vs Digital circuits; Modern computer architectures; Embedded systems;

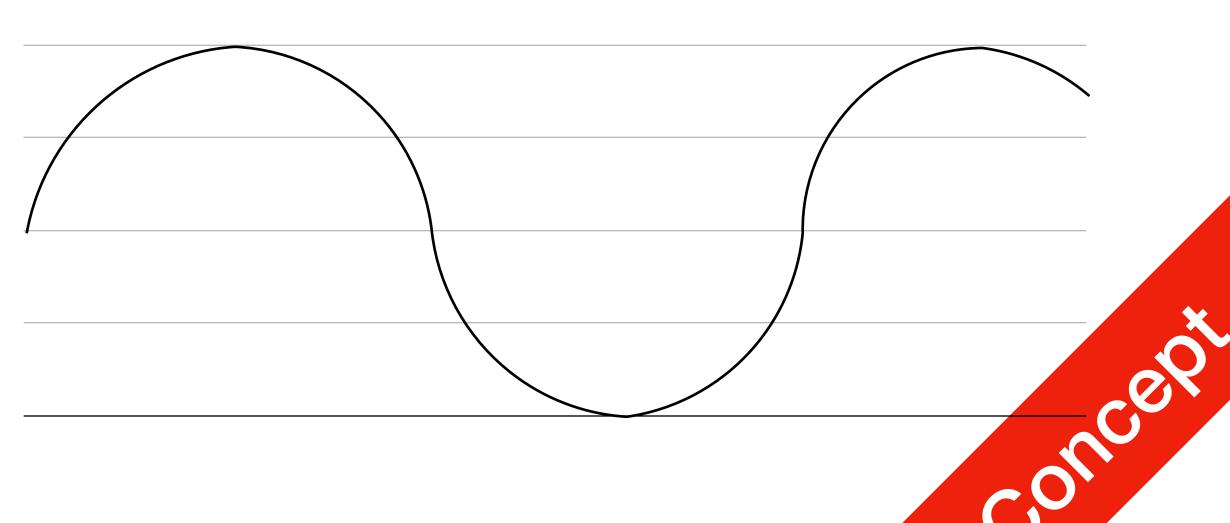
Number Systems; Conversions;

Arithmetic Operations; Alphanumeric Codes

Analog vs Digital circuits

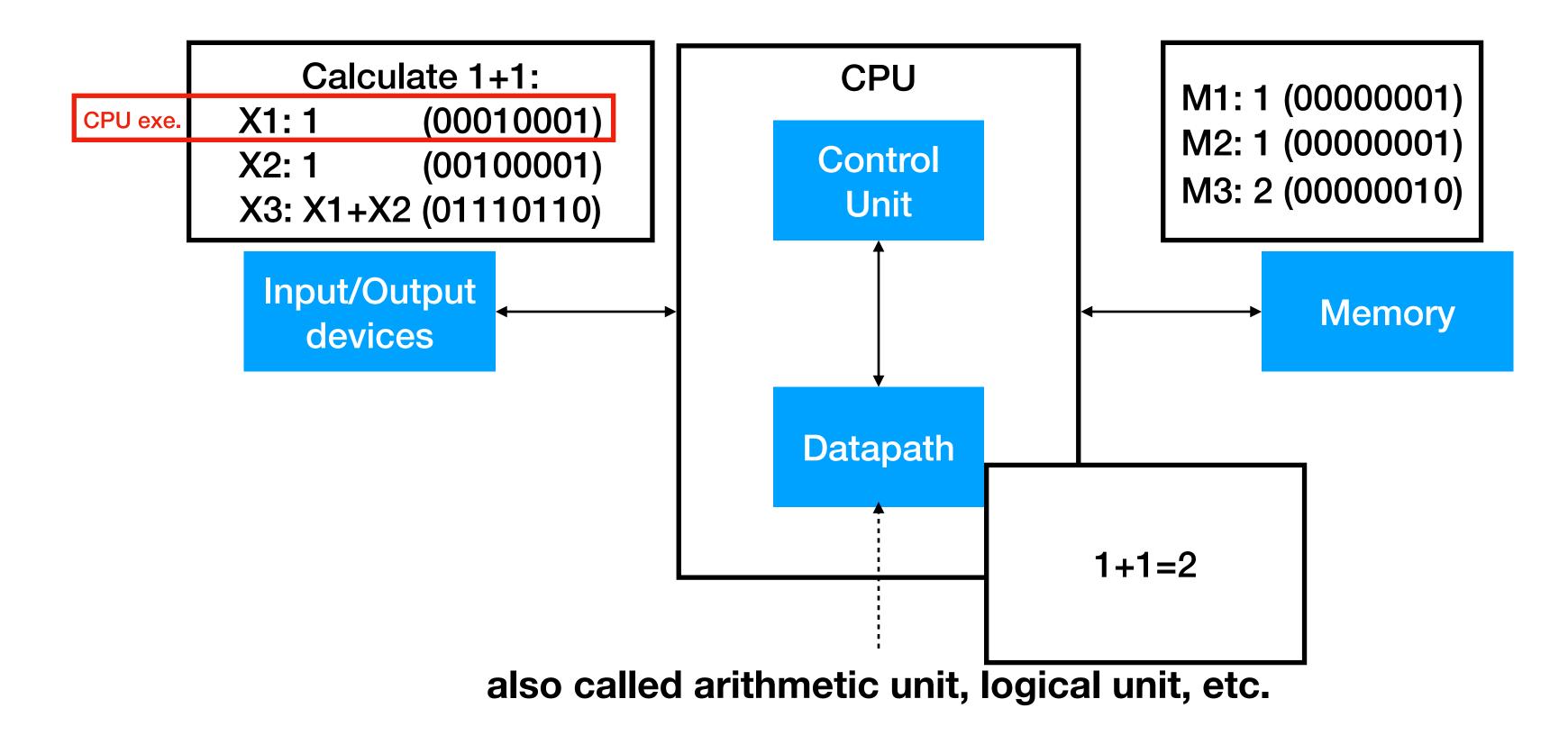
- Digital Circuits
 - Process digital signals
 - Current/Voltage represent discrete logical and numeric values
- 1 0.5 0.75 0.5 -1 0.25

- Analog Circuits
 - Process analog signals
 - Current/Voltage vary continuously to represent information



Digital Rep. Von Neumann Architecture

A very rough example



Computer

What's it like compared to a human?

- Input/Output devices
 - Interaction (Mouth, hands and feet, eyes, etc.)
- CPU + Memory
 - Processing information, thinking (Brain, short-term memory)
- Storage?
 - Part of I/O devices (Books, long-term memory)

Course

Embedded Systems

- Similar to computers: processes information
- Difference
 - Function is usually simpler, and very very specific
 - Not programmable

Couces

Decimal System

- Numbers as strings of digits, each ranging from 0-9
- The decimal system is of base(radix) 10

Decimal System

$$72 \boxed{4.05}$$

$$= 7 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0} + 0 \times 10^{-1} + 5 \times 10^{-2}$$

- Numbers as strings of digits, each ranging from 0-9
- The decimal system is of base(radix) 10

Numbers of base N

- Default base: 10
- When there are numbers represented in different bases, attach base
 - Decimal: $754.05 \rightarrow (754.05)_{10}$
 - e.g. Base 5: $(432.1)_5 = ?$

$$= 4 \times 5^{2} + 3 \times 5^{1} + 2 \times 5^{0} + 1 \times 5^{-1} = (117.2)_{10}$$

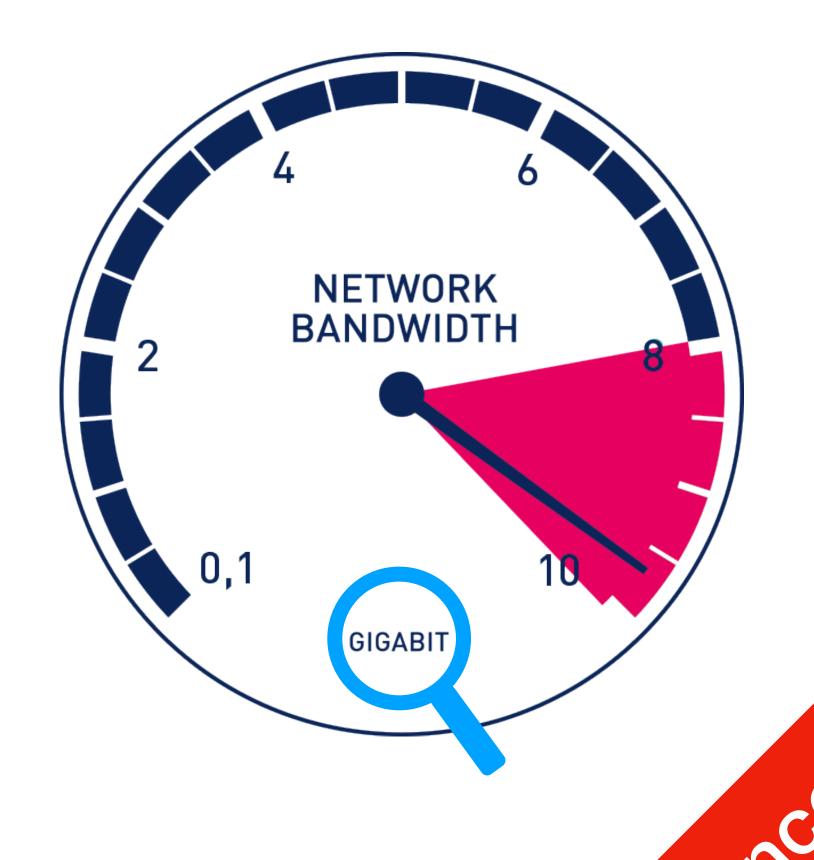
Color

Number Systems Binary Systems in Computers

- Every 8bit is called a Byte
- $1,024 = 2^{10}$ is called K (Kilo)
- $1,024 \times 1,024 = 2^{20}$ is called M (Mega)
- $1,024 \times 1,024 \times 1,024 = 2^{40}$ is called G (Giga)
- Tera, Peta, Exa, Zetta, Yotta

Number Systems Binary Systems in Computers 1

- What is the difference between MBps and Mbps?
 - MegaBytes per second vs MegaBits per second
 - 8x difference!



Octal and Hexadecimal Systems

Octal: base 8

• digits: 0-7

• Hexadecimal: base 16

• digits: 0-9, A-F (10-15)

Color

Conversions

10	9	8	7	6	5	4	3	2	1
1024	512	256	128	64	32	16	8	4	2

Binary-to-

Octal: 3bits per octal digit

Hexadecimal: 4bits per hexa digit

Decimal: use the chart

Decimal-to-

Binary: use the chart

Oct/Hex: do binary first

Color

Arithmetics

The same as decimal (mostly)

 $\begin{array}{c} 0010 & 0101 \\ +0011 & -0011 \\ \hline 0101 & 0010 \end{array}$

Example (binary)

Color Color

Octal

4672

43772

Arithmetics OCTAL Multiplication

Octal

$$5 \times 2 = 12$$

$$5 \times 6 + 1 = 37$$

$$5 \times 7 + 3 = 46$$

• • •

Decimal

$$10 = (12)_8$$

$$31 = (37)_8$$

$$38 = (46)_8$$

• • •

Representations Signed & Unsigned Integers

- Unsigned 8bit:
 - $(111111111)_2 = 255$
- Signed 8bit (only in digital circuits):
 - 127 -> '01111111'
 - -127 -> '11111111'

First digit:

- 0 for positive
- 1 for negative

(binary, 8bit, signed)

Representations Signed & Unsigned Integers

- Unsigned 8bit integer: 0 255
 - Signed 8bit integer: -128 127
- Unsigned 32bit integer: 0 4,294,967,295
 - Signed 32bit integer: -2,147,483,648 2,147,483,647
- Unless otherwise specified, treat as unsigned

Binary Coded Decimal

- Decimal numbers, each digit represented in 4bit binary, but separately
- $185 = (0001\ 1000\ 0101)_{BCD} = (10111001)_2$
- Used in places where using decimals directly is more convenient, such as digital watches etc.

ASCII

- American Standard Code for Information Interchange
- Assign each character with a 8bit binary code (e.g. '0'-'9', 'A'-'Z', 'a'-'z')
- The first bit is always 0

Parity Code

- For error detection in data communication
 - e.g. resulting from packet loss or other forms of interference
- One parity bit for n-bits
 - An extra even parity bit: whether the number of 1s is not even
 - An extra odd parity: whether the number of 1s is not odd
 - Can be placed in any fixed position
 - Does it always work?

P1.4 Representations

Parity Code

Original 7bits with Even parity with Odd parity 1000001 <u>0</u>1000001 11000001 1010100 <u>0</u>1010100 <u>1</u>1010100

O SWO

Circuits

- Circuits
 - Digital and Analog
- Integrated systems
 - Von Neumann computers
 - Embedded systems

Number Systems

- Number systems of base N
- Binary systems
- Octal and Hexadecimal systems
- Arithmetics

Number Systems in DC

- Bit, Byte, Representation ranges
- Signed and Unsigned Binary Integers
- BCD, ASCII, UTF8
- Parity bit

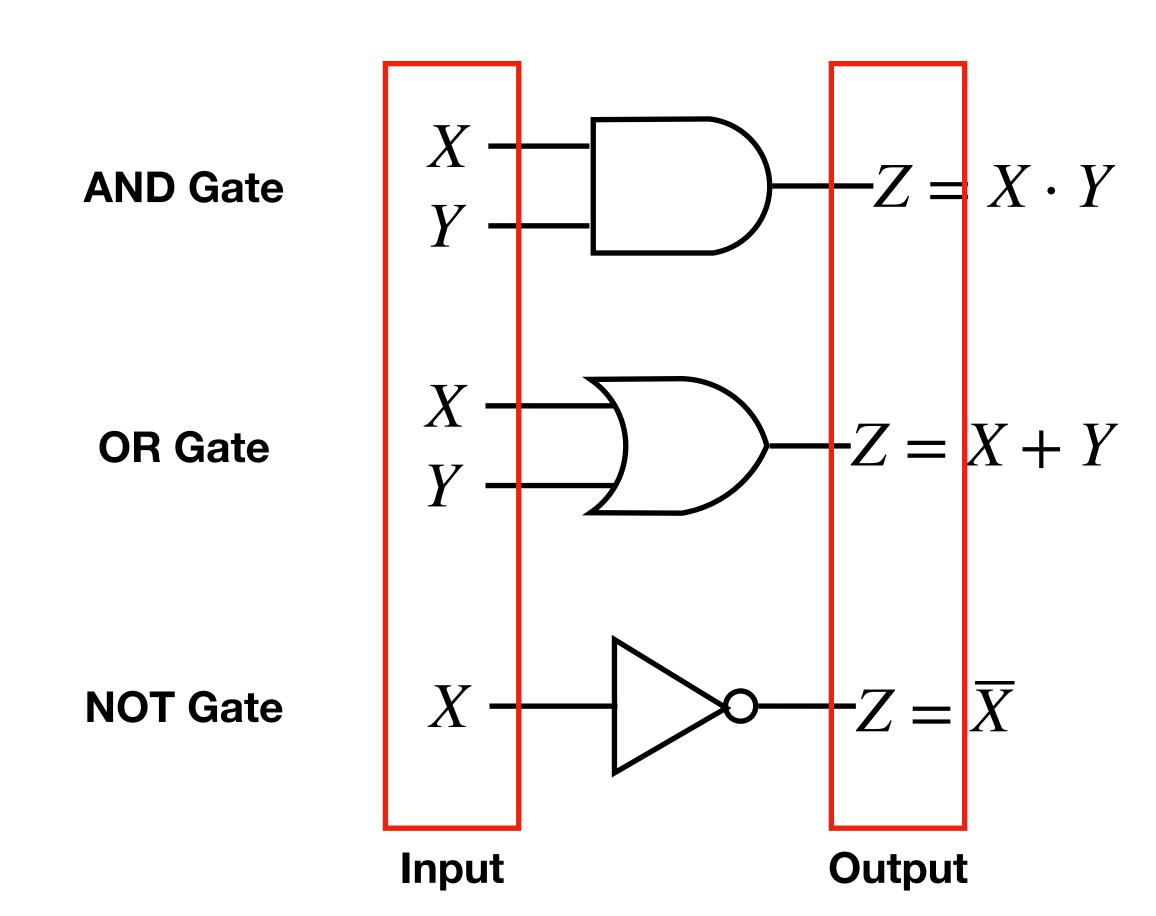
Lect 1 Summary Digital to Analog Conversion

- Frequency: number of cycles per second
- Sample rate: number of samples per unit time
- Bitrate: number of bits per second

Lecture 2: Combinational Logic Circuits

Logic Gates; Boolean Algebra; Minterm/Maxterm; K-Map; Some Other Gate Types

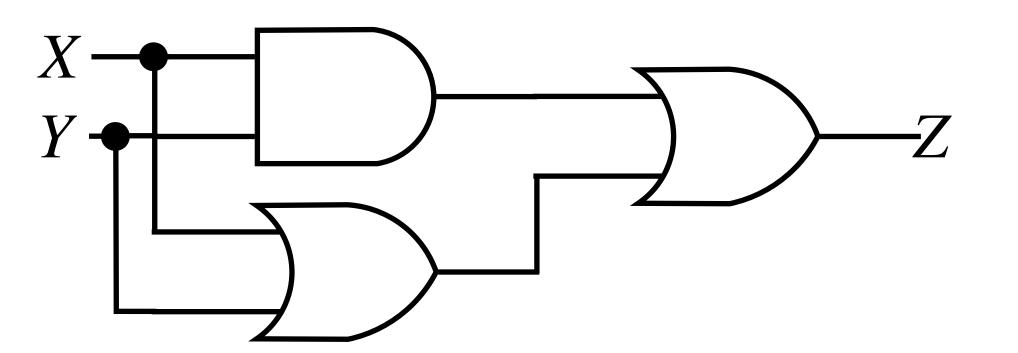
First 3 Gates



Truth Table

Truth Table

X	Y	$Z = (X \cdot Y) + (X + Y)$
0	0	0
0	1	1
1	0	1
1	1	1



- Boolean Algebra solving
 - Identify rules applicable to the expression
 - Apply rules that can help you simplify the expression
 - Simplification: reducing the number of variables and operators in an expression without changing it's truth table values
 - Atomic element: an element that can't have the number of its variables and operators reduced any further

Color

1.
$$X + 0 = X$$

2.
$$X \cdot 1 = X$$

3.
$$X + 1 = 1$$

4.
$$X \cdot 0 = 0$$

5.
$$X + X = X$$

6.
$$X \cdot X = X$$

7.
$$X + \overline{X} = 1$$

8.
$$X \cdot \overline{X} = 0$$

9.
$$\overline{\overline{X}} = X$$

Communicative

10.
$$X + Y = Y + X$$

$$11.XY = YX$$

Associative

$$12.X + (Y + Z) = (X + Y) + Z$$

$$13.X(YZ) = (XY)Z$$

Distributive

$$14.X(Y + Z) = XY + XZ$$

15.
$$X + (YZ) = (X + Y)(X + Z)$$

DeMorgan's

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Color

A.
$$X + XY = X$$

B.
$$XY + X\overline{Y} = X$$

C.
$$X + \overline{X}Y = X + Y$$

$$D. X(X+Y)=X$$

$$\mathsf{E.}\ (X+Y)(X+\overline{Y})=X$$

$$F. \quad X(\overline{X} + Y) = XY$$

Complementation

- \overline{F} : complement (invert) representation for a function F, obtained from an interchange of 1s to 0s and 0s to 1s for the values of F in the truth table
- Apply DeMorgan's Rule

$$16.\overline{X_1 + X_2 + \ldots + X_n} = \overline{X_1} \cdot \overline{X_2} \cdot \ldots \cdot \overline{X_n}$$

$$17.\overline{X_1 \cdot X_2 \cdot \ldots \cdot X_n} = \overline{X_1} + \overline{X_2} + \ldots + \overline{X_n}$$

Algebraic Manipulation

Difficulty: Simple

Simplify the following expressions

•
$$\overline{X} \cdot \overline{Y} + XYZ + \overline{X}Y$$

•
$$X + Y(Z + \overline{X} + \overline{Z})$$

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

•
$$\overline{W}X(\overline{Z} + \overline{Y}Z) + X(W + \overline{W}YZ)$$

•
$$(AB + \overline{A}\overline{B})(\overline{C}\overline{D} + CD) + AC$$

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

•
$$\overline{A} \cdot \overline{C} + \overline{A}BC + \overline{B}C$$

•
$$\overline{A + B + C} \cdot \overline{ABC}$$

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

•
$$AB\overline{C} + AC$$

•
$$\overline{A} \cdot \overline{B}D + \overline{A} \cdot \overline{C}D + BD$$

Algebraic Manipulation

Difficulty: HARDCORE

Prove the identity of each of the following Boolean equations

•
$$AB\overline{C} + B\overline{C} \cdot \overline{D} + BC + \overline{C}D = B + \overline{C}D$$

•
$$WY + \overline{W}Y\overline{Z} + WXZ + \overline{W}X\overline{Y} = WY + \overline{W}X\overline{Z} + \overline{X}Y\overline{Z} + X\overline{Y}Z$$

•
$$A\overline{D} + \overline{A}B + \overline{C}D + \overline{B}C = (\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + B + C + D)$$

Standard Forms

- Equivalent expressions can be written in a variety of ways
 Standard forms: typical such ways that incorporates some unique characteristics -> simplify the implementation of these designs
 - **Product terms** (AND terms): e.g. $\overline{X}YZ$ Literals with inverts connected through only AND operators
 - Sum terms (OR terms): e.g. $X+\overline{Y}+Z$ Literals with inverts connected through only OR operators

Minterms and Maxterms

Minterm
 Product term; Contains all variables; Has only one Positive row in the truth table

	X	Y	$m_0 = \overline{X}\overline{Y}$	$m_1 = \overline{X}Y$	$m_2 = X\overline{Y}$	$m_3 = XY$
$(00)_2=0$	0	0	1	0	0	0
$(01)_2=1$	0	1	0	1	0	0
$(10)_2=2$	1	0	0	0	1	0
$(11)_2=3$	1	1	0	0	0	1

Color

Minterms and Maxterms

Maxterm

Sum term; Contains all variables; Has only one Negative row in the truth

table

 $M_i = \overline{m_i}$

X	Y	$M_0 = X + Y$	$M_1 = X + \overline{Y}$	$M_2 = \overline{X} + Y$	$M_3 = \overline{X} + \overline{Y}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Minterms and Maxterms

• e.g.
$$M_3=X+\overline{Y}+\overline{Z}=\overline{\overline{X}YZ}=\overline{m}_3$$

Sum of Minterms

• e.g.
$$F=\overline{X}\overline{Y}\overline{Z}+\overline{X}Y\overline{Z}+X\overline{Y}Z+XYZ=m_0+m_2+m_5+m_7$$

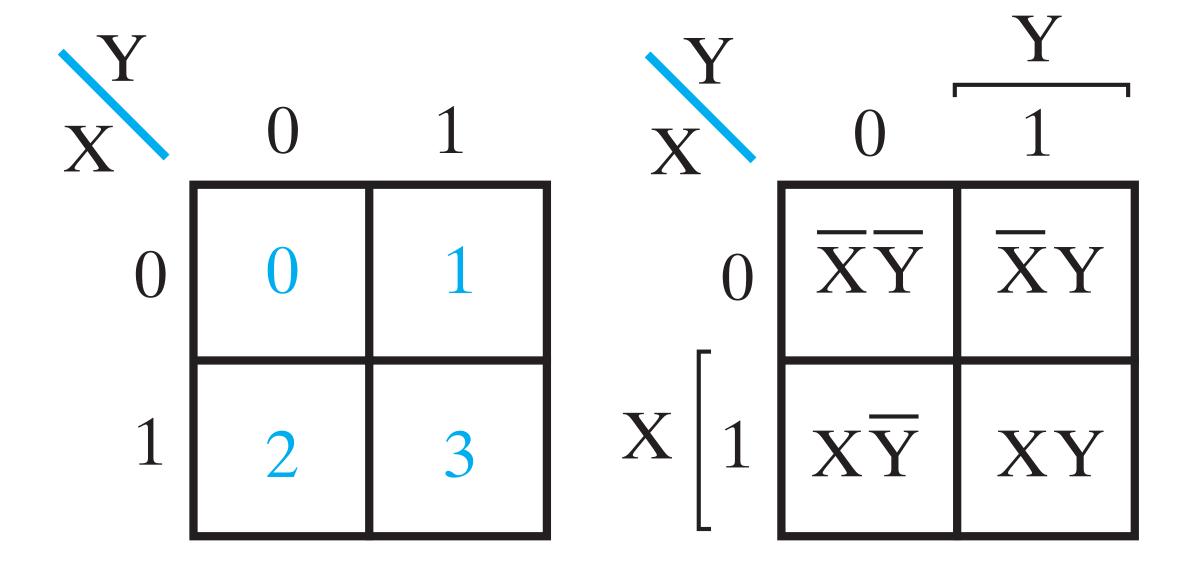
$$=\Sigma m(0,2,5,7)$$

Product of Maxterm

• e.g.
$$F=(X+Y+Z)(X+\overline{Y}+Z)(\overline{X}+Y+\overline{Z})(\overline{X}+\overline{Y}+\overline{Z})$$

= $M_0M_2M_5M_7$
= $\Pi M(0,2,5,7)$

Two Variable Maps

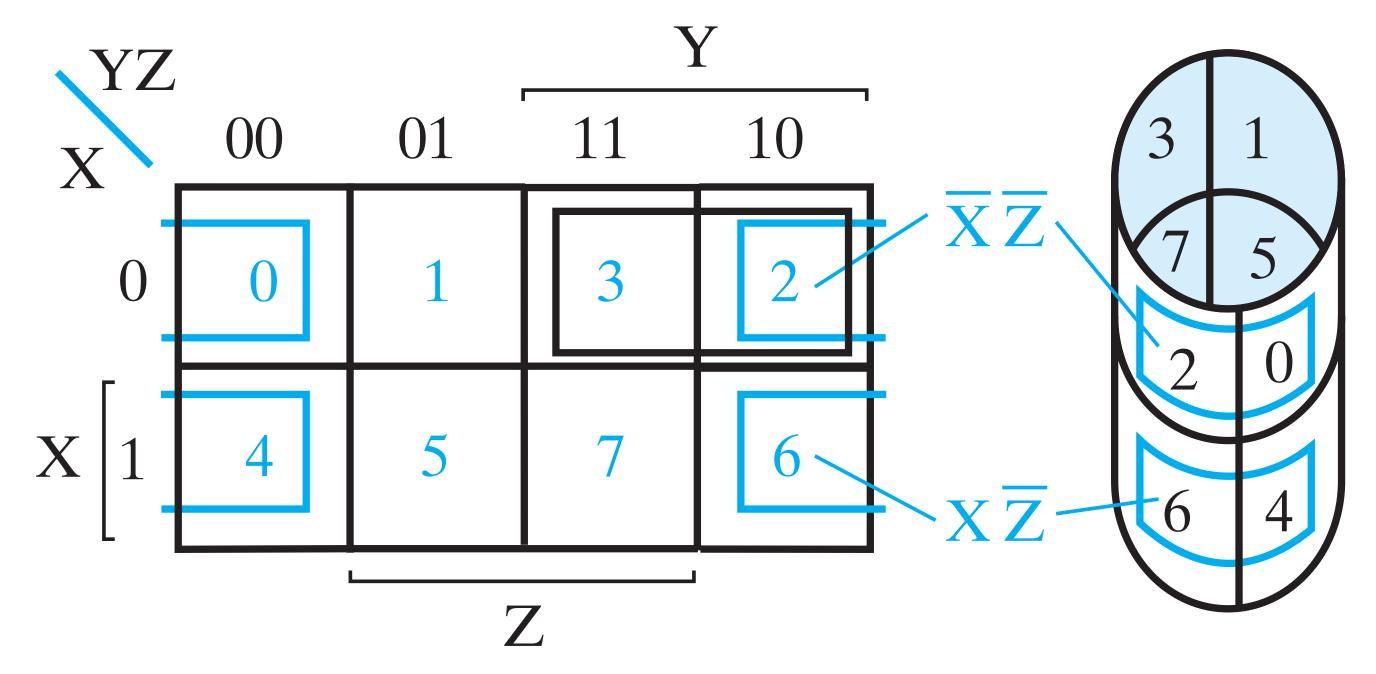


- Number of squares in each map is equal to the number of minterms for the same number of variables, light blue digit above is the index (of minterm)
- Two squares are adjacent if they only differ in one variable
- Binary value inside at each position indicates the truth table value for that term

Color

P2.4 K-Map

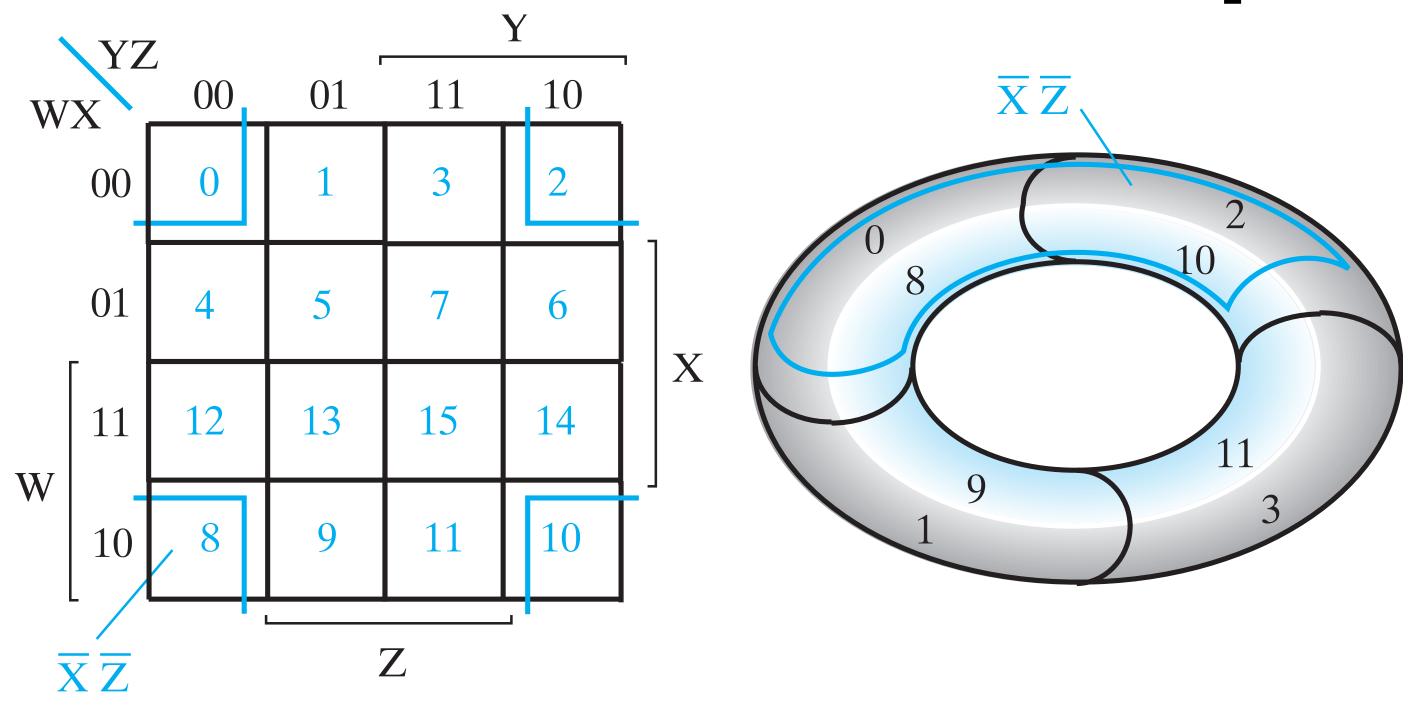
Three Variable Maps



- Number of squares in each map is equal to the number of minterms for the same number of variables, light blue digit above is the index (of minterm)
- Two squares are adjacent if they only differ in one variable
- Binary value inside at each position indicates the truth table value for that term

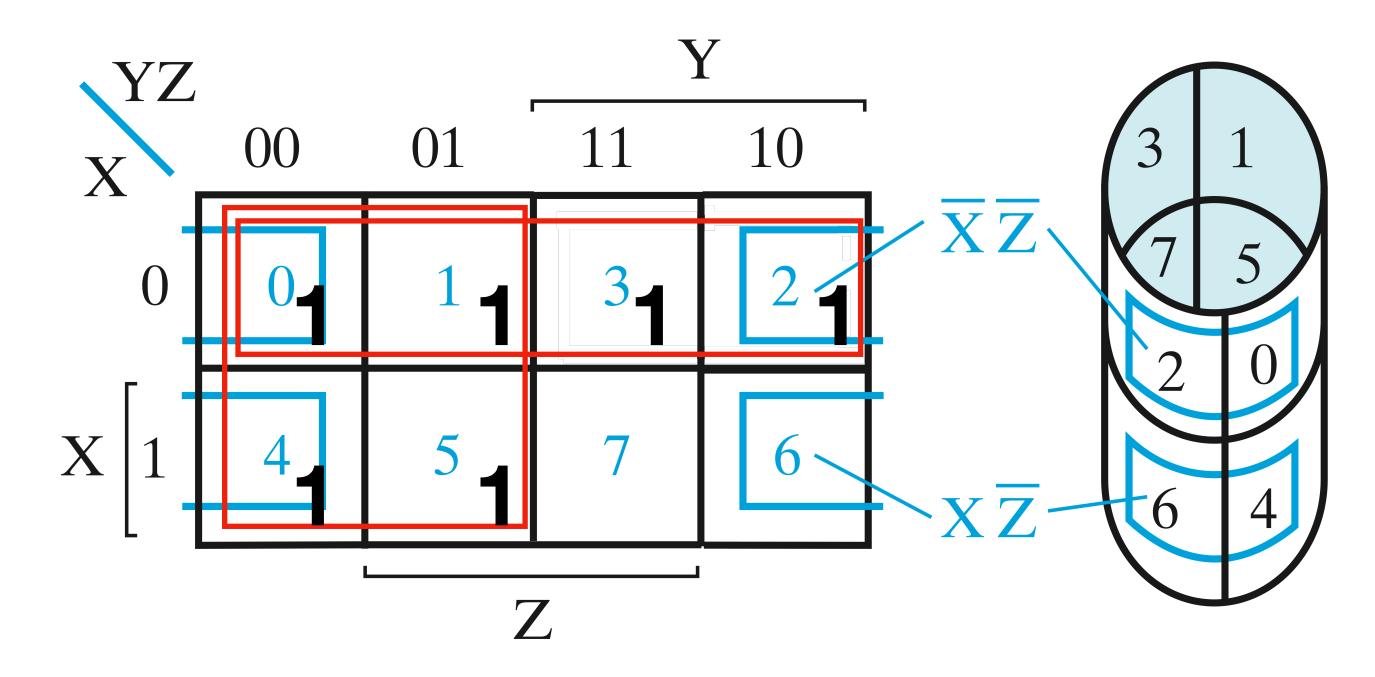
P2.4 K-Map

Four Variable Maps



- Number of squares in each map is equal to the number of minterms for the same number of variables, light blue digit above is the index (of minterm)
- Two squares are adjacent if they only differ in one variable
- Binary value inside at each position indicates the truth table value for that term

K Map Optimisation



$$F(X, Y, Z) = \sum m(0, 1, 2, 3, 4, 5)$$
$$= \overline{X} + \overline{Y}$$

- Step 1: Enter the values
- Step 2: Identify the set of largest rectangles in which all values are 1, covering all 1s
- Step 3: Read off the selected rectangles. If rectangle has odd length edges (excluding 1), split

Color Color

XOR Gate

XOR Gate Exclusive-OR

$$X \longrightarrow Z = X \oplus Y$$

$$= X\overline{Y} + \overline{X}Y$$

•
$$X \oplus 0 = X$$

•
$$X \oplus 1 = \overline{X}$$

•
$$X \oplus X = X$$

•
$$X \oplus \overline{X} = 1$$

•
$$X \oplus \overline{Y} = \overline{X \oplus Y}$$
 • $\overline{X} \oplus Y = \overline{X \oplus Y}$

•
$$\overline{X} \oplus Y = \overline{X \oplus Y}$$

XOR Truth Table

X	Y	$Z = X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

XOR Gate

•
$$X \oplus 0 = X$$

•
$$X \oplus X = X$$

•
$$X \oplus \overline{Y} = \overline{X \oplus Y}$$

•
$$X \oplus 1 = \overline{X}$$

•
$$X \oplus \overline{X} = 1$$

•
$$\overline{X} \oplus Y = \overline{X \oplus Y}$$

N-Gates

NOT Gate

$$X$$
 — $Z = \overline{X}$

NAND Gate

$$X \longrightarrow Y \longrightarrow Z = \overline{X \cdot Y}$$

NOR Gate

$$X \longrightarrow D \longrightarrow Z = \overline{X + Y}$$

XNOR Gate

$$X \longrightarrow Y$$

$$Y \longrightarrow Z = \overline{X \oplus Y}$$

Boolean Algebra

- I. AND, OR, NOT Operators and Gates
 - Simple digital circuit implementation
 - Algebraic manipulation using Binary Identities
- II. Standard Forms
 - Minterm & Maxterm
 - Sum of Products & Product of Sums
- III. Optimisation Using K-Map (For 2,3,4 Variables)
- IV. XOR, NAND, NOR, XNOR

Lecture 3: Combinational Logic Design

5 Steps Systematic Design Procedures; Functional Blocks; Decoder, Enabler, Multiplexer; Arithmetic Blocks

Systematic Design Procedures

- **Specification**: Write a specification for the circuit
- 2. **Formulation**: Derive relationship between inputs and outputs of the system e.g. using truth table or Boolean expressions
- 3. **Optimisation**: Apply optimisation, minimise the number of logic gates and literals required
- 4. **Technology Mapping**: Transform design to new diagram using available implementation technology
- 5. Verification: Verify the correctness of the final design in meeting the specifications

Hierarchical Design

- "divide-and-conquer"
- Circuit is broken up into individual functional pieces (blocks)
 - Each block has explicitly defined Interface (I/O) and Behaviour
 - A single block can be reused multiple times to simplify design process
 - If a single block is too complex, it can be further divided into smaller blocks, to allow for easier designs

Concept.

Value-Fixing, Transferring, and Inverting

- 1 Value-Fixing: giving a constant value to a wire
 - F = 0; F = 1;
- 2 Transferring: giving a variable (wire) value from another variable (wire)
 - F = X;
- 3 Inverting: inverting the value of a variable
 - $F = \overline{X}$

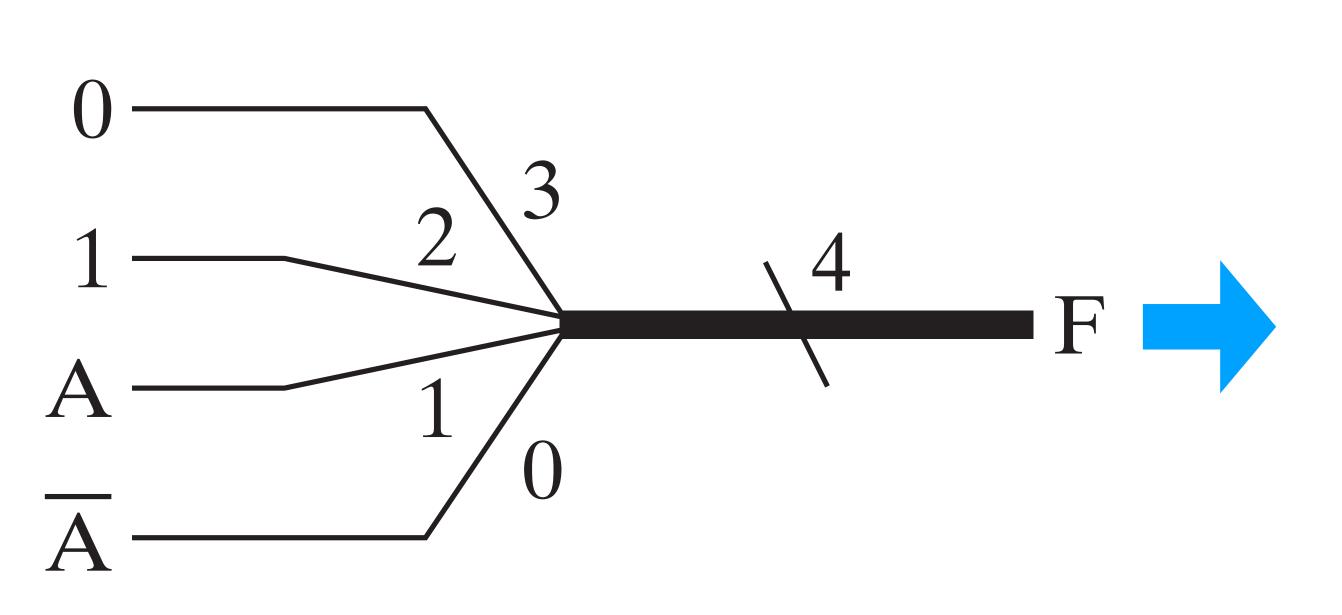
Vector Denotation

4 Multiple-bit Function

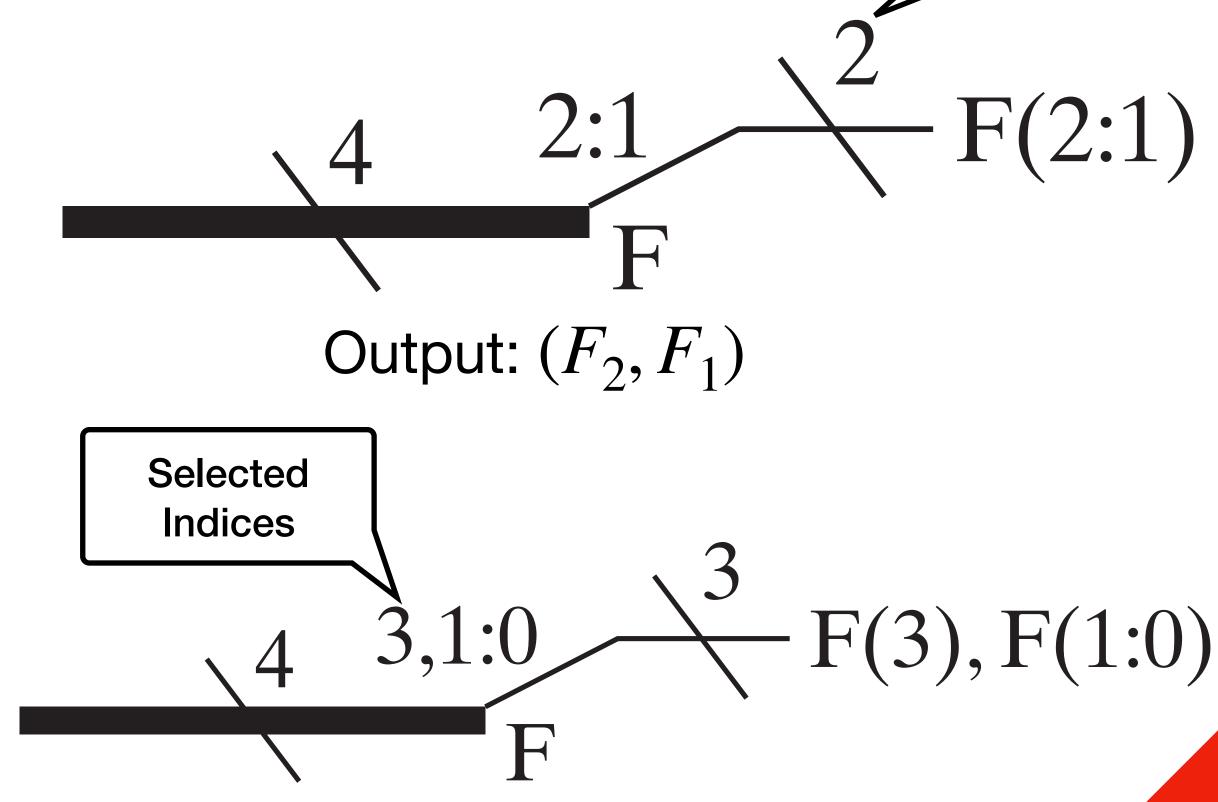
- Functions we've seen so far has only one-bit output: 0/1
- Certain functions may have *n*-bit output
 - $F(n-1:0) = (F_{n-1}, F_{n-2}, \dots, F_0)$, each F_i is a one-bit function
 - Curtain Motor Control Circuit: $F = (F_{\text{Motor}_1}, F_{\text{Motor}_2}, F_{\text{Light}})$

Elementary Func.

Taking part of the Vector



4 Multiple-bit Function



Output: (F_3, F_1, F_0)

6000

Dimension

Enabler

5 Enabler

• Transferring function, but with an additional EN signal acting as switch

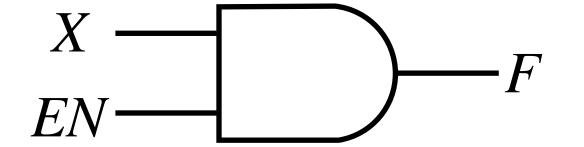
EN	X	F
0		0
1	0	0
1	1	1

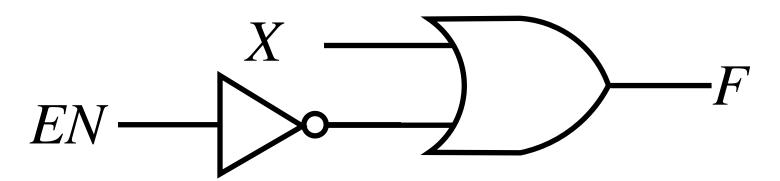
Color

Enabler

5 Enabler

ullet Transferring function, but with an additional EN signal acting as switch



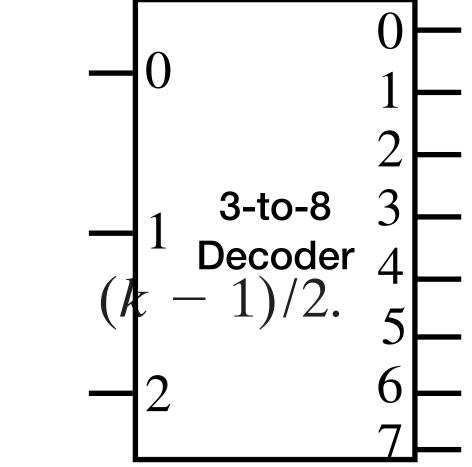


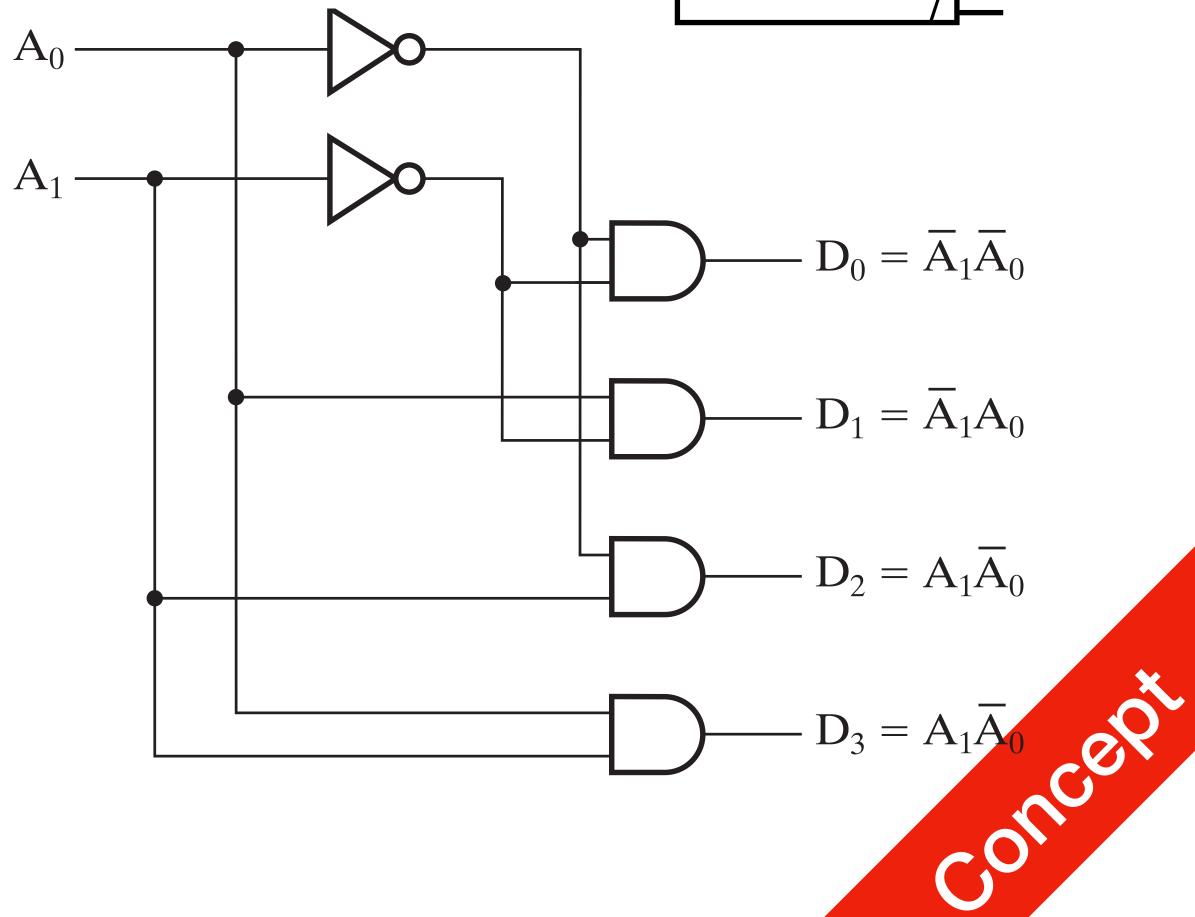
Colocolo

k = n Decoder

- n-bit input, 2^n bits output
 - $D_i = m_i$
- Design: use hierarchical designs!

A ₁	A ₀	D ₀	D ₁	D ₂	D ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

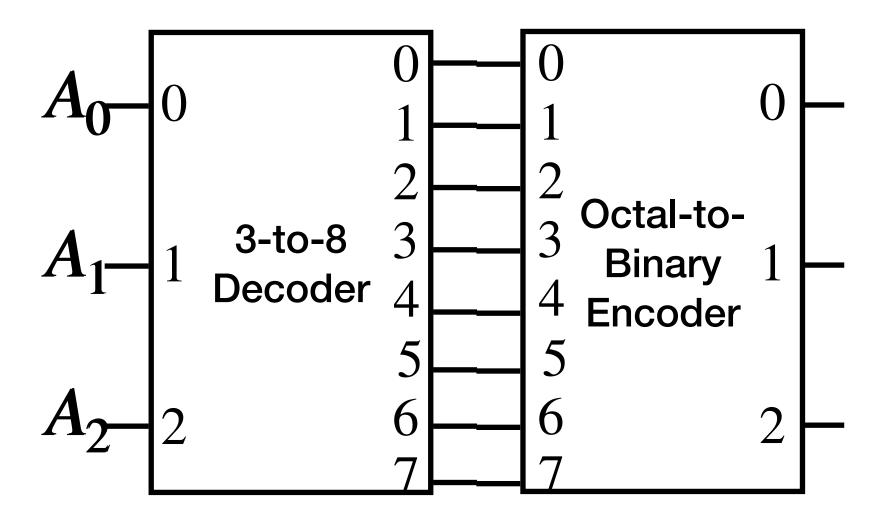




(k + 1)/2

Encoder

- Inverse operation of a decoder
- 2^n inputs, only one is giving positive input¹
- *n* outputs

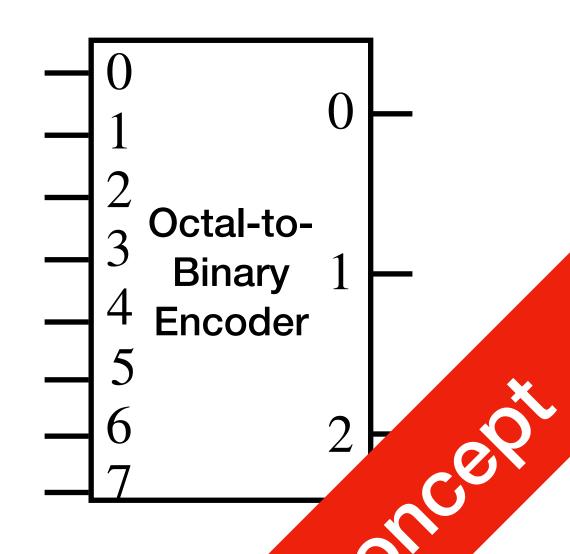


60,00

Encoder

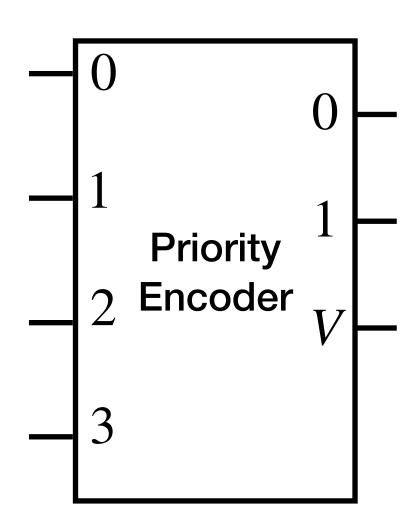
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	A ₀
							1	0	0	0
						1		0	0	1
					1			0	1	0
				1				0	1	1
			1					1	0	0
		1						1	0	1
	1							1	1	0
1								1	1	1

A_0	$= D_1 +$	$D_3 +$	$D_5 + D_7$	7
A_1	$= D_2 +$	$D_3 +$	$D_6 + D_7$	7
A_2	$= D_4 +$	$D_5 +$	$D_6 + D_7$	7



Priority Encoder

- ullet Additional Validity Output V
 - Indicating whether the input is valid (contains 1)
- Priority
 - Ignores $D_{< i}$ if $D_i = 1$



COUCS!

P3.3 Adv. Func. Blocks

Priority Encoder

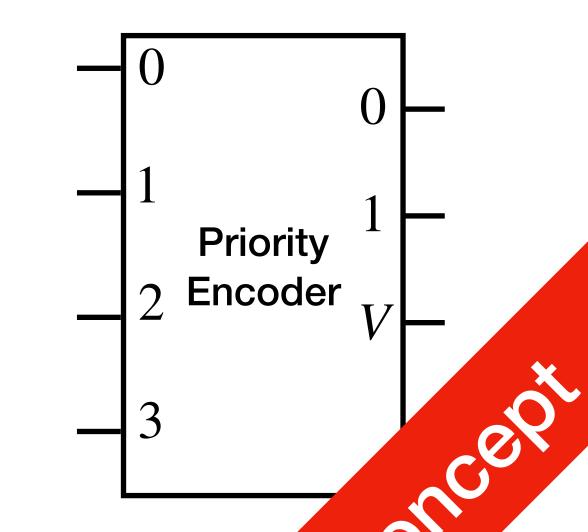
D ₃	D ₂	D ₁	D ₀	A ₁	A ₀	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

$$V = D_3 + D_2 + D_1 + D_0$$

$$A_1 = D_3 + \overline{D_3}D_2 = D_2 + D_3$$

$$A_0 = \overline{D_3}\overline{D_2}D_1 + D_3$$

$$= \overline{D_2}D_1 + D_3$$



Multiplexer

- Multiple *n*-variable input vectors
- Single n-variable output vector
- Switches: which input vectors to output

