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Some changes

• Assignment 4 and Lab 4 due 9 Aug, covering Lecture 7


• No class next Monday (BC day)


• Last batch of OJ problem: 6 problems p025-p030

Admin



Overview

• Focus: Data Structures


• Architecture: Linux/Unix OS


• Core Ideas:


1. Breath-First Search VS Depth-First Search



Search Algorithms
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Breath-First Search VS Depth-First Search



Breath-First Search

• Algorithm for traversing or searching 


• Visit all nodes on the same depth, 
before moving on


• Implementation using Queue


• Works on trees and graphs
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BFS Example

• Village of the Sorcerer


• Certain areas of the map are not 
reachable (fences, houses)


• Certain areas might be entirely 
blocked off by fences
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BFS Example
• Village of the Sorcerer


• Certain areas of the map are not 
reachable (fences, houses)


• Certain areas might be entirely 
blocked off by fences


• +: player


• Light Red: player accessible regions
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BFS Example
• We start by initialising a Queue to store 

coordinates


• push(playerCoordinate), which is 4,2


• push((4,2)); 

• In C++, you can simulate this using 2 
int-based queues
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, and 
mark itself as visited
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, and 
mark itself as visited

• front() = (4,2);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, and 
mark itself as visited

• front() = (4,2);

• push(4,1); push(4,3); push(5,2)
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, and 
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• front() = (4,2);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (4,1);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (4,1);

• push(3,1);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (4,3);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (5,2);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (5,2);

• no push here
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (5,2);

• no push here

• pop();
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (3,1);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (3,1);

• push(2,1);
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BFS Example
• For every frontal element, push it’s 

neighbouring reachable coordinates, 
and mark itself as visited

• front() = (3,3);
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BFS Example

• For every frontal element, push it’s 
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BFS Example

• For every frontal element, push it’s 
neighbouring reachable coordinates, 
and mark itself as visited

• front() = (2,1); pop();
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BFS Example

• For every frontal element, push it’s 
neighbouring reachable coordinates, 
and mark itself as visited

• front() = (2,1); pop();

• front() = (2,3); pop();
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BFS Example

• Assuming map size , what is the time and space complexity?N × M
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• Time complexity: O(N × M)
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BFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it  as well? Why?Θ(N × M)

• Space complexity: O(N × M)

• Is it  as well? Why?Θ(N × M)
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Depth-First Search

• Algorithm for traversing or searching 


• Take a single route till the end, then 
look for other routes


• Implementation using Stack


• Works on trees and graphs
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Depth-First Search

Rev
iew
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• Depth-First Search (BFS) 

• Go all the way till there’s no way 
forward, then go back to find another 
way


• Classic searching algorithm



DFS Tree

Dem
o

P1 
Searching

A

• 	Push the root directory A



DFS Tree
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DFS Tree
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• 	Push C

B A



DFS Tree
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• Cannot go any further, pop C
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DFS Tree
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• Push D, the next not yet visited child of B
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• Pop E, go back to D
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• Push F
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• Pop F, go back to D
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• Pop D, go back to B
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• Pop G, go back to B
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• Pop B, go back to A
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DFS Tree
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• Pop H, go back to A



DFS Tree
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• Pop A, traversal completed


• Traversal Sequence 
A-B-C-D-E-F-G-H-I-J-K



DFS Tree Analysis
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• Assuming  nodes,  connections, what is the time and space complexity?N M

• Time complexity: O(N + M)

• Is it  as well? Why?Θ(N + M)
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DFS Example
• Village of the Sorcerer


• Certain areas of the map are not 
reachable (fences, houses)


• Certain areas might be entirely 
blocked off by fences


• +: player


• Light Red: player accessible regions
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DFS Example
• We start by initialising a Stack to store 

coordinates


• push(playerCoordinate), which is 4,2


• push((4,2)); 

• In C++, you can simulate this using 2 
int-based stacks
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DFS Example

• For every frontal element, traverse 
randomly until cannot further


• top() = (4,2); 

• push(4,1)
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• For every frontal element, traverse 
randomly until cannot further
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P1 
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(2, 1) (3, 1) (4, 1) (4, 2)

Top



DFS Example

• For every frontal element, traverse 
randomly until cannot further


• top() = (2,1); 

• pop(); pop(); pop();

P1 
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 1) (4, 1) (4, 2)

Top



DFS Example

• For every frontal element, traverse 
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DFS Example

• For every frontal element, traverse 
randomly until cannot further


• top() = (3,2); 

• push(3,3); pop(); pop();
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DFS Example

• For every frontal element, traverse 
randomly until cannot further


• top() = (3,3); 

• push(2,3); pop(); pop();
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• For every frontal element, traverse 
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• For every frontal element, traverse 
randomly until cannot further
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• pop() pop(); pop();

P1 
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 1) (4, 1) (4, 2)

Top



DFS Example

• For every frontal element, traverse 
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• For every frontal element, traverse 
randomly until cannot further
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DFS Example

• For every frontal element, traverse 
randomly until cannot further


• top() = (4,2); 

• push(5,2) pop(); pop();
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• For every frontal element, traverse 
randomly until cannot further


• top() = (4,2); 

• pop() pop(); pop();
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2 # # #
3 # #
4 # + # #
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• Time complexity: O(N × M)
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DFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it  as well? Why?Θ(N × M)

• Space complexity: O(N × M)

• Is it  as well? Why?Θ(N × M)
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Summary
• Lecture 7: Data Structure 1-4


• Linked List


• Stack


• Queue


•  and Big-O Notation


• BFS, DFS
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