
30.07.20 17:33CSCI 125
Introduction to Computer Science and

Programming II
Lecture 7: Data Structure IV

Jetic Gū

2020 Summer Semester (S2)

Some changes

• Assignment 4 and Lab 4 due 9 Aug, covering Lecture 7

• No class next Monday (BC day)

• Last batch of OJ problem: 6 problems p025-p030

Admin

Overview

• Focus: Data Structures

• Architecture: Linux/Unix OS

• Core Ideas:

1. Breath-First Search VS Depth-First Search

Search Algorithms

Sum
mary

P1
Searching

Breath-First Search VS Depth-First Search

Breath-First Search

• Algorithm for traversing or searching

• Visit all nodes on the same depth,
before moving on

• Implementation using Queue

• Works on trees and graphs

Rev
iew

P1
Searching

BFS Example

• Village of the Sorcerer

• Certain areas of the map are not
reachable (fences, houses)

• Certain areas might be entirely
blocked off by fences

P1
Searching

Dem
o

BFS Example
• Village of the Sorcerer

• Certain areas of the map are not
reachable (fences, houses)

• Certain areas might be entirely
blocked off by fences

• +: player

• Light Red: player accessible regions

P1
Searching

1. P030 Dem
o

 ***** # # ***## #
 |######***** #*
 # # # #| #**
 ## # # # # ##***
 ### + ### |
 # # # ##

BFS Example
• Village of the Sorcerer

• Certain areas of the map are not
reachable (fences, houses)

• Certain areas might be entirely
blocked off by fences

• +: player

• Light Red: player accessible regions

P1
Searching

1. P030 Dem
o

 ***** # # ***## #
 |######***** #*
 # # # #| #**
 ## # # # # ##***
 ### + ### |
 # # # ##

BFS Example
• We start by initialising a Queue to store

coordinates

• push(playerCoordinate), which is 4,2

• push((4,2));

• In C++, you can simulate this using 2
int-based queues

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 2)

Front

BFS ExampleP1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 2)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates, and
mark itself as visited

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 2)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates, and
mark itself as visited

• front() = (4,2);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 2)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates, and
mark itself as visited

• front() = (4,2);

• push(4,1); push(4,3); push(5,2)

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 2) (4, 1) (4, 3) (5, 2)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates, and
mark itself as visited

• front() = (4,2);

• push(4,1); push(4,3); push(5,2)

• pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 1) (4, 3) (5, 2)

Front

BFS ExampleP1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 1) (4, 3) (5, 2)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 1) (4, 3) (5, 2)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (4,1);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 1) (4, 3) (5, 2)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (4,1);

• push(3,1);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 1) (4, 3) (5, 2)

Front

(3, 1)

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (4,1);

• push(3,1);

• pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 3) (5, 2)

Front

(3, 1)

BFS ExampleP1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 3) (5, 2) (3, 1)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 3) (5, 2) (3, 1)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (4,3);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 3) (5, 2) (3, 1)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (4,3);

• push(3,3);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(4, 3) (5, 2) (3, 1)

Front

(3, 3)

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (4,3);

• push(3,3);

• pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(5, 2) (3, 1)

Front

(3, 3)

BFS ExampleP1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(5, 2) (3, 1) (3, 3)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(5, 2) (3, 1) (3, 3)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (5,2);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(5, 2) (3, 1) (3, 3)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (5,2);

• no push here

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(5, 2) (3, 1) (3, 3)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (5,2);

• no push here

• pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 1) (3, 3)

Front

BFS ExampleP1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 1) (3, 3)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 1) (3, 3)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (3,1);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 1) (3, 3)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (3,1);

• push(2,1);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 1) (3, 3)

Front

(2, 1)

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (3,1);

• push(2,1);

• pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 3)

Front

(2, 1)

BFS ExampleP1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 3) (2, 1)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 3) (2, 1)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (3,3);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 3) (2, 1)

Front

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (3,3);

• push(2,3);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(3, 3) (2, 1)

Front

(2, 3)

BFS Example
• For every frontal element, push it’s

neighbouring reachable coordinates,
and mark itself as visited

• front() = (3,3);

• push(2,3);

• pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(2, 1)

Front

(2, 3)

BFS ExampleP1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(2, 1) (2, 3)

Front

BFS Example

• For every frontal element, push it’s
neighbouring reachable coordinates,
and mark itself as visited

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(2, 1) (2, 3)

Front

BFS Example

• For every frontal element, push it’s
neighbouring reachable coordinates,
and mark itself as visited

• front() = (2,1); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

(2, 3)

Front

BFS Example

• For every frontal element, push it’s
neighbouring reachable coordinates,
and mark itself as visited

• front() = (2,1); pop();

• front() = (2,3); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # # #
4 # + #
5 # #

Dem
o

Front

BFS Example

Dem
o

P1
Searching

BFS Example

• Assuming map size , what is the time and space complexity?N × M

Dem
o

P1
Searching

BFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

Dem
o

P1
Searching

BFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

Dem
o

P1
Searching

BFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

• Space complexity: O(N × M)

Dem
o

P1
Searching

BFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

• Space complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

Dem
o

P1
Searching

Depth-First Search

• Algorithm for traversing or searching

• Take a single route till the end, then
look for other routes

• Implementation using Stack

• Works on trees and graphs

Rev
iew

P1
Searching

Depth-First Search

Rev
iew

P1
Searching

• Depth-First Search (BFS)

• Go all the way till there’s no way
forward, then go back to find another
way

• Classic searching algorithm

DFS Tree

Dem
o

P1
Searching

A

• 	Push the root directory A

DFS Tree

Dem
o

P1
Searching

B

• 	Push B

A

DFS Tree

Dem
o

P1
Searching

C

• 	Push C

B A

DFS Tree

Dem
o

P1
Searching

B

• Cannot go any further, pop C

A

DFS Tree

Dem
o

P1
Searching

D

• Push D, the next not yet visited child of B

B A

DFS Tree

Dem
o

P1
Searching

E

• Push E

D B A

DFS Tree

Dem
o

P1
Searching

D

• Pop E, go back to D

B A

DFS Tree

Dem
o

P1
Searching

F

• Push F

D B A

DFS Tree

Dem
o

P1
Searching

D

• Pop F, go back to D

B A

DFS Tree

Dem
o

P1
Searching

B

• Pop D, go back to B

A

DFS Tree

Dem
o

P1
Searching

G

• Push G

B A

DFS Tree

Dem
o

P1
Searching

B

• Pop G, go back to B

A

DFS Tree

Dem
o

P1
Searching

A

• Pop B, go back to A

DFS Tree

Dem
o

P1
Searching

H

• Push H

A

DFS Tree

Dem
o

P1
Searching

I

• Push I

H A

DFS Tree

Dem
o

P1
Searching

J

• Push J

I H A

DFS Tree

Dem
o

P1
Searching

I

• Pop J, go back to I

H A

DFS Tree

Dem
o

P1
Searching

K

• Push K

I H A

DFS Tree

Dem
o

P1
Searching

I

• Pop K, go back to I

H A

DFS Tree

Dem
o

P1
Searching

H

• Pop I, go back to H

A

DFS Tree

Dem
o

P1
Searching

A

• Pop H, go back to A

DFS Tree

Dem
o

P1
Searching

• Pop A, traversal completed

• Traversal Sequence 
A-B-C-D-E-F-G-H-I-J-K

DFS Tree Analysis

Dem
o

P1
Searching

DFS Tree Analysis

• Assuming nodes, connections, what is the time and space complexity?N M

Dem
o

P1
Searching

DFS Tree Analysis

• Assuming nodes, connections, what is the time and space complexity?N M

• Time complexity: O(N + M)

Dem
o

P1
Searching

DFS Tree Analysis

• Assuming nodes, connections, what is the time and space complexity?N M

• Time complexity: O(N + M)

• Is it as well? Why?Θ(N + M)

Dem
o

P1
Searching

DFS Tree Analysis

• Assuming nodes, connections, what is the time and space complexity?N M

• Time complexity: O(N + M)

• Is it as well? Why?Θ(N + M)

• Space complexity: Θ(N + M)

Dem
o

P1
Searching

DFS Tree Analysis

• Assuming nodes, connections, what is the time and space complexity?N M

• Time complexity: O(N + M)

• Is it as well? Why?Θ(N + M)

• Space complexity: Θ(N + M)

• Is it as well? Why?Θ(N + M)

Dem
o

P1
Searching

DFS Example
• Village of the Sorcerer

• Certain areas of the map are not
reachable (fences, houses)

• Certain areas might be entirely
blocked off by fences

• +: player

• Light Red: player accessible regions

P1
Searching

1. P030 Dem
o

 ***** # # ***## #
 |######***** #*
 # # # #| #**
 ## # # # # ##***
 ### + ### |
 # # # ##

DFS Example
• We start by initialising a Stack to store

coordinates

• push(playerCoordinate), which is 4,2

• push((4,2));

• In C++, you can simulate this using 2
int-based stacks

P1
Searching

(4, 2)

top

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (4,2);

• push(4,1)

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(4, 1) (4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (4,1);

• push(3,1);

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 1) (4, 1) (4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (3,1);

• push(2, 1)

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(2, 1) (3, 1) (4, 1) (4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (2,1);

• pop(); pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 1) (4, 1) (4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (3,1);

• push(3,2); pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 2) (3, 1) (4, 1)

Top

(4, 2)

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (3,2);

• push(3,3); pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 3) (3, 2) (3, 1)

Top

(4, 1) (4, 2)

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (3,3);

• push(2,3); pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(2, 3) (3, 3) (3, 2)

Top

(3, 1) (4, 1) (4, 2)

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (2,3);

• pop() pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 3) (3, 2) (3, 1)

Top

(4, 1) (4, 2)

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (3,3);

• pop() pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 2) (3, 1) (4, 1)

Top

(4, 2)

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (3,2);

• pop() pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(3, 1) (4, 1) (4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (3,1);

• pop() pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(4, 1) (4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (4,1);

• pop() pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (4,2);

• push(5,2) pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(5, 2)

Top

(4, 2)

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (5,2);

• pop() pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

(4, 2)

Top

DFS Example

• For every frontal element, traverse
randomly until cannot further

• top() = (4,2);

• pop() pop(); pop();

P1
Searching

1. P030

0 1 2 3 4

0 * #
1 # # # # #
2 # # #
3 # #
4 # + # #
5 # #

Dem
o

Top

DFS Example

Dem
o

P1
Searching

DFS Example

• Assuming map size , what is the time and space complexity?N × M

Dem
o

P1
Searching

DFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

Dem
o

P1
Searching

DFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

Dem
o

P1
Searching

DFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

• Space complexity: O(N × M)

Dem
o

P1
Searching

DFS Example

• Assuming map size , what is the time and space complexity?N × M

• Time complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

• Space complexity: O(N × M)

• Is it as well? Why?Θ(N × M)

Dem
o

P1
Searching

Summary
• Lecture 7: Data Structure 1-4

• Linked List

• Stack

• Queue

• and Big-O Notation

• BFS, DFS

Θ

Futu
re

P1
Searching

