
29.07.20 12:22CSCI 125
Introduction to Computer Science and

Programming II
Lecture 7: Data Structure II

Jetic Gū

2020 Summer Semester (S2)

Some changes

• Assignment 4 and Lab 4 will be released this week, covering Lecture 7

• No more Assignment 5 and Lab 5: less work for you

• Last batch of OJ problem: 9 problems p025-p033

Admin

Overview

• Focus: Data Structures

• Architecture: Linux/Unix OS

• Core Ideas:

1. Algorithm Analysis

2. Queue

Algorithm Analysis

Sum
mary

P1
Complexity

Complexity

Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant
steps

• The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

Rev
iew

P0
XXXXXXX

Front/1st Back/nth

Find constant constant
Insert constant constant
Erase constant up to n

P1
Complexity

Estimation of performance

Algorithm Analysis
• Predict performance

• Compare different data structures and performance

• The performance of different operations of data structures

• The performance of different implementations of data structures

• e.g. Stack: Array implementation vs. linked list implementation

• Avoid major problems in performance in production

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Why Performance?
• Ensure efficient execution of programme

• e.g. terrible optimisation of Microsoft Office on macOS

• Ensure efficient processing of operations

• such as for a web server, handling user requests

• Algorithm Analysis

• Provide guarantees

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant
steps

• The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

Rev
iew

P0
XXXXXXX

Front/1st Back/nth

Find constant constant
Insert constant constant
Erase constant up to n

P1
Complexity

Estimation of performance

Problem!
• up to n is hardly a scientific expression

• Actual implementation can take much more

• Addition of 12 and 35: ~10 steps of
machine code

• This is actually closer to some

• steps, where and are
constants
an + b a b

Conc
ep

t

P0
XXXXXXX

Front/1st Back/nth

Find constant constant
Insert constant constant
Erase constant up to n

P1
Complexity

 notationΘ

• Notation

• , where is an asymptotically tight bound for

• asymptotically tight bound: there exists constants , , and , such that
for all ,

Θ

f(n) = Θ(g(n)) g(n) f(n)

c1 c2 n0
n > n0

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

Conc
ep

t

P0
XXXXXXX

P1
Complexity

 notationΘ
• Example: 3n + 8 = Θ(n)

Te
ch

nic
al

P0
XXXXXXX

P1
Complexity

0

40

80

120

160

0 10 20 30 40

3n + 8
4n

2n

n0 = 8

Degree of Change
• Constant:  

actual steps: , where is a constant

• Linear:  
actual steps: , where are constants

• Quadratic:  
actual steps: , where are constants

•

Θ(1)
c c

Θ(n)
c1n + c0 ci

Θ(n2)
c2n2 + c1n + c0 ci

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Degree of ChangeP0
XXXXXXX

P1
Complexity

Conc
ep

t

Θ(nn) Θ(n3) Θ(n2) Θ(n)

Θ(log n)

Θ(1)

• Say you are using to describe
time complexity for an operation
with as input size

• e.g.  
There is always an , after which
the higher degrees of change will
make the operation more costly

Θ

n

Θ(n) > Θ(log n) > Θ(1)
n0

n0

Big-O notation
• Notation:

• asymptotically tight bound: there exists constants , , and , such that for all
,

• Big-O Notation: , where is an asymptotical upper bound for

• asymptotical upper bound: there exists constants , and , such that for all ,

Θ f(n) = Θ(g(n))

c1 c2 n0
n > n0

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

f(n) = O(g(n)) g(n) f(n)

c n0 n > n0

f(n) ≤ cg(n)

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Big-O notation
• Example: 3n + 8 = O(n)

Te
ch

nic
al

P0
XXXXXXX

P1
Complexity

0

40

80

120

160

0 10 20 30 40

3n + 8
4nn0 = 8

Big-O notation

• Why Big-O?

• If an algorithm is , it is  
But NOT the other way, since only gives you the upper bound

• Sometimes calculating is not practical, but Big-O tells us the worst-case
scenario

• also gives us the lower-bound, which we do not usually care about

Θ(g(n)) O(g(n))
O(g(n))

Θ

Θ

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Degree of Change

• Constant:  
e.g. perform a single addition

• Linear:  
e.g. sum up numbers

• Quadratic:  
e.g. selection sort, bubble sort

•

O(1)

Θ(n)
n

Θ(n2)

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Degree of ChangeP0
XXXXXXX

P1
Complexity

Conc
ep

t

• Say you are using Big-O to
describe time complexity for an
operation with as input size

• e.g.  
There is always an , after which
the higher degrees of change will
make the operation more costly

n

O(n) > O(log n) > O(1)
n0

n0

Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant
steps

• The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

Conc
ep

t

P0
XXXXXXX

Front/1st Back/nth

Find constant constant
Insert constant constant
Erase constant up to n

P1
Complexity

Front/1st Back/nth

Find O(1) O(1)
Insert O(1) O(1)
Erase O(1) O(n)

Complexities
• Time complexity

• Estimation of time it takes to execute...

• 1 second on modern 3.0GHz CPU: roughly steps, 
e.g. , ; , ;

• Sometimes constants do vary

• Space complexity

• Estimation of memory space / storage space it takes

109

O(n3) n ≤ 1000 O(n2) n ≤ 10000

Conc
ep

t

P0
XXXXXXX

P1
Complexity

Example: Bubble Sort 1

• Time complexity: ; Spatial Complexity: Θ(n2) Θ(n)

Exe
rci

se

P0
XXXXXXX

P1
Complexity

 func BubbleSort(arr):

 for i from 1 to n:

 for j from 1 to n-1:

 if (arr[j]> arr[j-1]):

 swap(arr[j], arr[j-1])

Example: Bubble Sort 2

• Time complexity: ; Spatial Complexity: O(n2) Θ(n)

Exe
rci

se

P0
XXXXXXX

P1
Complexity

 func BubbleSort(arr):

 sorted = false;

 while sorted == false:

 sorted = true;

 for j from 1 to n-1:

 if (arr[j]> arr[j-1]):

 swap(arr[j], arr[j-1]);

 sorted = false;

sorted is detecting whether
the array is already sorted

In this case the lower-bound
can be linear (already sorted),
so we can only use Big-O for

worse-case scenario

Example: MyList

Thin
k

P0
XXXXXXX

P1
Complexity

• What are the complexities of each of
these operations?

• prepend(...)

• append(...)

• get(0), get(n/2), get(n)

• delete(0), delete(n/2),
delete(n)

1. class MyList {

2. int value;

3. MyList* next;

4. MyList* last;

5. public:

6. int length;

7. MyList();

8. ~MyList();

9. void prepend(int val);

10. void append(int val);

11. int get(int ind);

12. int give(int ind, int val);

13. int delete(int ind);

14.};

Queue

Sum
mary

P2
Queue

Queue

• Queue: first-in–first-out (FIFO)

• Front: return frontal element

• Pop: remove frontal element, return
its value

• Push: insert element to the back

Conc
ep

t

P2
Queue

Queue

• Queue: first-in–first-out (FIFO)

• Front: return frontal element

• Pop: remove frontal element, return
its value

• Push: insert element to the back

Conc
ep

t

P2
Queue

• Stack: last-in–first-out (LIFO)

• Top: return top element

• Pop: remove top element, return its
value

• Push: insert element to the Top

Queue

• Exceptions

1. Calling Pop on an empty queue

2. Calling Front on an empty queue

Conc
ep

t

P2
Queue

Applications of Queue
• Webserver request processing

• Multiple clients may be requesting services from one or more servers

• Some clients may have to wait while the servers are busy

• Those clients are placed in a queue and serviced in the order of arrival

• Most shared computer services are servers:

• Web, file, ftp, database, mail, printers, ssh, WOW, etc.

Conc
ep

t

P2
Queue

Implementations

• Implementations of queues:

• Singly linked lists (MyList)

• Why is it not feasible to use a standard array?

• Requirements

• All queue operations must run in Θ(1) time

Conc
ep

t

P2
Queue

Queue-as-List Class
• The Queue class using a singly linked list

has a single private member variable

• 5: empty  
returns whether the stack is empty,

• 6: front  
returns the frontal element

• 7: push  
insert new element to the back

• 8: pop  
remove frontal element, return its value

Θ(1)

Θ(1)

Θ(1)

Θ(1)

Conc
ep

t

1. class Queue {

2. private:

3. MyList list;

4. public:

5. bool empty();

6. int front();

7. void push(int val);

8. int pop();

9. };

P2
Queue

Queue-as-List Class

• The empty and push functions just
call the appropriate functions of the
MyList class

• Similar to our Stack implementation,
but on line 5 we have append
instead of prepend

Conc
ep

t

1. bool Queue::empty() {

2. return list.length==0;

3. }

4. void Queue::push(int val) {

5. list.append(val);

6. }

P2
Queue

Queue-as-List Class

• The front and pop functions,
however, must check the boundary
case

• Just like in Stack

Conc
ep

t

1. int Queue::front() {

2. if (empty())

3. return -1;

4. return list.get(0);

5. }

6. int Queue::pop() {

7. if (empty())

8. return -1;

9. return list.delete(0);

10.}

P2
Queue

Implementation Using Array
	 For one-ended arrays, all operations at the back are constant

Conc
ep

t

Front/1st Back/nth

Find O(1) O(1)
Insert O(n) O(1)
Erase O(n) O(1)

P2
Queue

Implementation Using Array
Using a two-ended array1, are possible by pushing at the back and popping from the frontO(1)

Conc
ep

t

1. Not required

Front/1st Back/nth

Find O(1) O(1)
Insert O(1) O(1)
Erase O(1) O(1)

P2
Queue

Application
• Traversal of a directory tree

• Consider searching the directory structure

Dem
o

P2
Queue

Tree BFS
• Breadth-First Search (BFS)

• Search all the directories at one level before descending a level

• Classic searching algorithm

Dem
o

P0
XXXXXXX

P2
Queue

Tree BFS
• The easiest implementation is:

• Place the root directory into a queue

• While the queue is not empty:

• Pop the directory at the front of the queue

• Push all of its sub-directories into the queue

• The order in which the directories come out of the queue will be in breadth-
first order

Dem
o

P2
Queue

Tree BFS
	 Push the root directory A

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop A and push its two sub-directories: B and H

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop B and push C, D, and G

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop H and push its one sub-directory I

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop C: no sub-directories

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop D and push E and F

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop G

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop I and push J and K

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop E

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop F

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop J

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Tree BFS
	 Pop K and the queue is empty

Dem
o

P2
Queue

Visited
Not yet

X Current
X Push

Application

• The resulting order

 A-B-H-C-D-G-I-E-F-J-K

 is in breadth-first order

• What is the time and space complexity of this algorithm?

Dem
o

P2
Queue

Summary

• Lecture 7: Data Structure 1-3

• Linked List

• Stack

• Queue

• and Big-O NotationΘ

Futu
re

P2
Queue

