52

29.07.20 12:22

CSCI 125
Introduction to Computer Science and
Programming ||
Lecture 7: Data Structure Il

M — Sl v G v Lq » & v I ";‘,ﬁ
il O far>ia O O R “‘:5;‘3;" F; ;
S H e {;f .w; ™ e g Y " 'Y B

4 .::.1 P‘ - 4 ¢ ¥

I A 4 ¥y . Aol foCOnpm
¥

533
Al

' I
=l
-

T et

4 @EEY (@

Jetic Gu
2020 Summer Semester (S2)

Some changes

e Assignment 4 and Lab 4 will be released this week, covering Lecture 7
e No more Assignment 5 and Lab 5: less work for you

e | ast batch of OJ problem: 9 problems p025-p033

Overview

e Focus: Data Structures
e Architecture: Linux/Unix OS
e Core ldeas:

1. Algorithm Analysis

2. Queue

Algorithm Analysis

Complexity

¥ Linked-List Implementation

e Operations at the front of a singly linked list are all very efficient: constant

steps
list_head > > OO+ —>Q—>Q—>§)—>@
list tail

Front/1st Back/nth

Find constant constant

Insert constant constant Estimation of performance

Erase constant upton

e The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

Algorithm Analysis

e Predict performance
e Compare different data structures and performance
 The performance of different operations of data structures
* The performance of different implementations of data structures
e e.g. Stack: Array implementation vs. linked list implementation

e Avoid major problems in performance in production

P1
Complexity

e Ensure efficient execution of programme

Why Performance?

e e.g. terrible optimisation of Microsoft Office on macOS
e Ensure efficient processing of operations
e such as for a web server, handling user requests

e Algorithm Analysis

* Provide guarantees

¥ Linked-List Implementation

e Operations at the front of a singly linked list are all very efficient: constant

steps
list_head > > OO+ —>Q—>Q—>§)—>@
list tail

Front/1st Back/nth

Find constant constant

Insert constant constant Estimation of performance

Erase constant upton

e The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

P1
Complexity

Problem!

e up to n is hardly a scientific expression

e Actual implementation can take much more

| Front/1=t Back/n® e Addition of 12 and 35: ~10 steps of
Find constant constant machine code

Insert constant constant

Erase constant upton This Is actually closer to some

e an + b steps, where a and b are
constants

® notation

e (® Notation
e f(n) =0O(g(n)), where g(n) is an asymptotically tight bound for f(n)

o asymptotically tight bound: there exists constants ¢, ¢,, and n,,, such that
for all n > n,,

0 < c1g(n) < f(n) < c8(n)

® notation

e Example: 3n + 8 = O(n)

160

n = 3
120 0 4An

80

40

Degree of Change

e Constant: O(1)
actual steps: ¢, where ¢ Is a constant

e Linear: ®(n)
actual steps: cin + ¢, where c; are constants

e Quadratic: O(n?)
actual steps: czn2 + ¢yn + ¢, where c; are constants

Degree of Change

O(n") () B(n*)

’ O(n)
e Say you are using ® to describe |
time complexity for an operation
with n as input size
Time
e e£.g. ©(log n)

There is always an 71, after which
the higher degrees of change will /

make the operation more costly

Data Input

Big-O notation

e ©® Notation: f(n) = O(g(n))

o asymptotically tight bound: there exists constants ¢, ¢,, and ny,, such that for all
n > ny,

0 < ¢18(n) < f(n) < c8(n)
» Big-O Notation: f(n) = O(g(n)), where g(n) is an asymptotical upper bound for f(n)

o asymptotical upper bound: there exists constants ¢, and n, such that for all n > n,,

f(n) < cg(n)

Big-O notation

e Example: 3n + 8 = O(n)

160

n = 3
120 0 4An

80 3n+8

40

0 :
0 " 10 20 30

Big-O notation

e Why Big-O?

e If an algorithm is ®(g(n)), itis O(g(n))
But NOT the other way, since O(g(7n)) only gives you the upper bound

 Sometimes calculating ® is not practical, but Big-O tells us the worst-case
scenario

e (also gives us the lower-bound, which we do not usually care about

Degree of Change

e Constant: O(1)
e.g. perform a single addition

e Linear: ®(n)
e.dg. sum up n numbers

e Quadratic: O(n?)
e.g. selection sort, bubble sort

Degree of Change

e Say you are using Big-O to |
describe time complexity for an

operation with n as input size

Time
e e.g.
There is always an 71, after which
the higher degrees of change will /

make the operation more costly

O(log n)

Data Input

¥ Linked-List Implementation

e Operations at the front of a singly linked list are all very efficient: constant

steps
list_head—a()—>()—>()—> e« —>O—>O—>9—>@
list tail
Front/1st Back/mth
Find cofitant cofxtant
Insert co{tant cofXtant
Erase coftant uEion

e The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

Complexities

e [ime complexity

e Estimation of time it takes to execute...

e 1 second on modern 3.0GHz CPU: roughly 10” steps,
e.g. O(n°), n < 1000; O(n?), n < 10000;

e Sometimes constants do vary
e Space complexity

e Estimation of memory space / storage space it takes

Example: Bubble Sort 1

func BubbleSort (arr) :
for 1 from 1 to n:
for 7 from 1 to n-1:
1f (arr[j]> arr[3-1]) :

swap (arr[j], arr[j—-11)

e Time complexity: ®(n?); Spatial Complexity: ®(n)

Example: Bubble Sort 2

func BubbleSort (arr) :
sorted = false;

while sorted == false: sorted is detecting whether

the array is already sorted
sorted = true; y y

for 7 from 1 to n-1:
In this case the lower-bound
1f (arr[j]> arr[j-1]): can be linear (already sorted),
so we can only use Big-0 for

swap (arr[J], arr([3J-1]); worse-case scenario

sorted = false;

e Time complexity: O(n?); Spatial Complexity: ®(n)

Example: MyList

1. class MyList f{
e What are the complexities of each of int value:
these operations? - MyList* next:
4 . MyList* last;
® prepend(...) 5. public:
6. int length;
® append(...) 7. MyList () ;
8 . ~MyList () ;
e get (0),get(n/2), get (n) 9. void prepend (int val);
10. void append (int wval) ;
e delete(0),delete(n/2), 11. int get(int ind);
delete (n) 12. int give(int ind, int val);
13. int delete(int 1nd);

14.}%};

Queue

e Queue: first-in—first-out (FIFO) HEEEEEEEEE
Frznt BaTck
e Front: return frontal element
NN NENE—
e Pop: remove frontal element, return Frznt BaTck

Its value

.} ’IIIIIIII’

Front Back

e Push: insert element to the back

e Queue: first-in—first-out (FIFO)
e Front: return frontal element

e Pop: remove frontal element, return
its value

e Push: insert element to the back

Queue

e Stack: last-in—first-out (LIFO)
e Jop: return top element

e Pop: remove top element, return its
value

e Push: insert element to the Top

P2
Queue

’..-...-.,
e EXceptions Front Back
1. Calling Pop on an empty queue ,---------W
Front Back

2. Calling Front on an empty queue

'ﬁ ?IIIIIIII’

Front Back

Applications of Queue

e \Webserver request processing
e Multiple clients may be requesting services from one or more servers
e Some clients may have to wait while the servers are busy
e Those clients are placed in a queue and serviced in the order of arrival
e Most shared computer services are servers:

e Web, file, ftp, database, mail, printers, ssh, WOW, efc.

Implementations

e |mplementations of queues:

e Singly linked lists (MyList)

e Why is it not feasible to use a standard array?
e Requirements

e All queue operations must run in B(1) time

Queue-as-List Class

e The Queue class using a singly linked list 1. class Queue {
has a single private member variable |
2 . private:
* Oiempty 3. MyList list;
returns whether the stack is empty, ®(1)
4. public:
e 6. front
O. bool empt ;
returns the frontal element ®(1) pty ()
. int front();
e /:push | |
insert new element to the back ®(1) X vold push(int val);
g . int pop() ;
e 8. pop
9. }7

remove frontal element, return its value ®(1)

Queue-as-List Class

1. bool Queue::empty () {

e The empty and push functionsjust 2. return list.length==0;
call the appropriate functions of the 3.1
MyList class '
* Similar to our Stack implementation, , i3 oueue::push (int val) |

but on line 5 we have append
instead of prepend 5. list.append(val);

0. }

Queue-as-List Class

1. 1nt Queue::front () {
2. if (empty ())
3. return -1;
4 . return list.get (0);
e The front and pop functions,
however, must check the boundary >
case
6. int Queue::pop () {
e Justlikein Stack - if (empty ())
3 . return -1;
9. return list.delete(0);

10.}

¥ Implementation Using Array

For one-ended arrays, all operations at the back are constant

0

[a[Bc] -+~ _I¥[z[[T --+ T

Front/1st Back/nth
Find O(1) O(1)
Insert O(n) O(1)
Erase O(n) O(1)

¥ Implementation Using Array

Using a two-ended array?!, O(1) are possible by pushing at the back and popping from the front
[T - TIAIEL -+ -+ 1

Front/1st Back/nth

Find O(1) O(1)
Insert O(1) O(1)
Erase O(1) O(1)

1. Not required

Application

e [raversal of a directory tree

e Consider searching the directory structure

Tree BFS

 Breadth-First Search (BFS)
 Search all the directories at one level before descending a level

e (Classic searching algorithm

N

Tree BFS

e The easiest implementation is:
e Place the root directory into a queue
e While the queue is not empty:
e Pop the directory at the front of the queue

e Push all of its sub-directories into the queue

e The order in which the directories come out of the queue will be in breadth-
first order

Tree BFS

Push the root directory A

ALT T]

Tree BFS

Pop A and push its two sub-directories: B and H

QHIIH\IIH |
H
() visited
< /‘D'\ © /‘ }\) ONotyet
@Current

Tree BFS

Pop B and push C, D, and G

Alc[olel T T [T TTT]
: \
e () visited
ONotyet
@Current

Tree BFS

Pop H and push its one sub-directory |

clole[T T TTTTTT]
® 8 \
() visited
o R € /‘ }\ A ONotyet
E G @Current

Tree BFS

Pop C: no sub-directories

ofc[] [[[[TTTT]
0 @ \
() visited
O R © /(>\ AR (O Not yet
E G @Current

Tree BFS

Pop D and push E and F

GIHE[FI T T [[T [T]]
® ® \
e © @ B HSD () visited
) »\ ONotyet
G G @Current

Tree BFS

Pop G
[E[F[T T T T T T TT]
@ @ @ ABHCDG OViSited
/‘ ’\ ONotyet
G G @Current

Tree BFS

Pop | and push J and K

E[F[JIKI T T T T T T[]

@ @ @ ABHCDGO | OViSited
O Not yet
G G @Current

Tree BFS

Pop E
A

FUIKE T T T T T 0]
@ \

c) (o) (G ABHCDGIE O visited
O Not yet
@ G @Current

Tree BFS

Pop F

INEEEEEEEEER
@ \

c) (o) (G ABHCDGIEF O visited
O Not yet
@ G @Current

Tree BFS

Pop J

JENEEEEEEEEN
0 \

c) (o) (G ABHCDGIEFJ O visited
O Not yet
@ G @Current

Tree BFS

Pop K and the queue is empty
(A

B H)

c) (o) (G ABHCDGIEFJK O visited
O Not yet
@ G @Current

Application

e [he resulting order

A-B-H-C-D-G-I-E-F-J-K

IS In breadth-first order

e What is the time and space complexity

Summary

e | ecture 7: Data Structure 1-3
e |Linked List
e Stack

e Queue

e (9 and Big-O Notation

