CSCI 125 Introduction to Computer Science and **Programming II** Lecture 7: Data Structure II

Jetic Gū 2020 Summer Semester (S2)

- Assignment 4 and Lab 4 will be released this week, covering Lecture 7
- No more Assignment 5 and Lab 5: less work for you
- Last batch of OJ problem: 9 problems p025-p033

Some changes

Overview

- Focus: Data Structures
- Architecture: Linux/Unix OS
- Core Ideas:
 - 1. Algorithm Analysis
 - 2. Queue

Algorithm Analysis

Complexity

Complexity Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant steps list_head→O→O→ · · · · -

$115C_{100}$		
IISt_tai	.1	
		F
	Find	С
	Insert	С
	Erase	С

all operations at the front

• The desired behaviour of an Abstract Stack may be reproduced by performing

Algorithm Analysis

- Predict performance
- Compare different data structures and performance
 - The performance of different operations of data structures
 - The performance of different implementations of data structures
 - e.g. Stack: Array implementation vs. linked list implementation
- Avoid major problems in performance in production

Why Performance?

- Ensure efficient execution of programme
 - e.g. terrible optimisation of Microsoft Office on macOS
- Ensure efficient processing of operations
 - such as for a web server, handling user requests
- Algorithm Analysis
 - Provide guarantees

Complexity Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant steps list_head→O→O→ · · · · -

$115C_{100}$		
IISt_tai	.1	
		F
	Find	С
	Insert	С
	Erase	С

all operations at the front

• The desired behaviour of an Abstract Stack may be reproduced by performing

Front/1 st	Back/n th

Find	constant	constant

Insert	constant	constant
Erase	constant	up to n

Problem!

- up to n is hardly a scientific expression
 - Actual implementation can take much more
 - Addition of 12 and 35: ~10 steps of machine code
 - This is actually closer to some
 - an + b steps, where a and b are constants

(b) notation

- O Notation

 - for all $n > n_0$,

• $f(n) = \Theta(g(n))$, where g(n) is an **asymptotically** tight bound for f(n)

• asymptotically tight bound: there exists constants c_1 , c_2 , and n_0 , such that

 $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$

(b) notation

• Example: $3n + 8 = \Theta(n)$

. . . .

- Constant: $\Theta(1)$ actual steps: c, where c is a constant
- Linear: $\Theta(n)$ actual steps: $c_1n + c_0$, where c_i are constants
- Quadratic: $\Theta(n^2)$ actual steps: $c_2 n^2 + c_1 n + c_0$, where c_i are constants

Degree of Change

- Say you are using Θ to describe time complexity for an operation with *n* as input size
- e.g. $\Theta(n) > \Theta(\log n) > \Theta(1)$ There is always an n_0 , after which the higher degrees of change will make the operation more costly

Degree of Change

- Θ Notation: $f(n) = \Theta(g(n))$
 - $n > n_0$,

 $0 \leq c_1 g(n)$

Big-O notation

• asymptotically tight bound: there exists constants c_1 , c_2 , and n_0 , such that for all

$$n) \le f(n) \le c_2 g(n)$$

• Big-O Notation: f(n) = O(g(n)), where g(n) is an asymptotical upper bound for f(n)

• asymptotical upper bound: there exists constants c, and n_0 , such that for all $n > n_0$,

 $f(n) \le cg(n)$

• Example: 3n + 8 = O(n)

Big-O notation

- Why Big-O?
 - If an algorithm is $\Theta(g(n))$, it is O(g(n))
 - scenario
 - Θ also gives us the lower-bound, which we do not usually care about

Big-O notation

But **NOT** the other way, since O(g(n)) only gives you the upper bound

• Sometimes calculating Θ is not practical, but Big-O tells us the worst-case

. . . .

- Constant: O(1)e.g. perform a single addition
- Linear: $\Theta(n)$ e.g. sum up *n* numbers
- Quadratic: $\Theta(n^2)$ e.g. selection sort, bubble sort

Degree of Change

- Say you are using Big-O to describe time complexity for an operation with *n* as input size
- e.g. $O(n) > O(\log n) > O(1)$ There is always an n_0 , after which the higher degrees of change will make the operation more costly

Degree of Change

Complexity Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant steps

- Find co**Øst**ant co**Q**(**t**)ant
- Insert co**Øst**ant coostant
- Erase co**Øst**ant u (**0**(*t***0**) n
- all operations at the front

Front/1st Back/nth

• The desired behaviour of an Abstract Stack may be reproduced by performing

Complexities

- Time complexity
 - Estimation of time it takes to execute...
 - 1 second on modern 3.0GHz CPU: roughly 10^9 steps, e.g. $O(n^3)$, $n \le 1000$; $O(n^2)$, $n \le 10000$;
 - Sometimes constants do vary
- Space complexity
 - Estimation of memory space / storage space it takes

Example: Bubble Sort 1

func BubbleSort(arr):
 for i from 1 to n:
 for j from 1 to n-1:
 if (arr[j]> arr[j-1]):
 swap(arr[j], arr[j-1])

• Time complexity: $\Theta(n^2)$; Spatial Complexity: $\Theta(n)$

Example: Bubble Sort 2

func BubbleSort(arr):

sorted = false;

while sorted == false:

sorted = true;

for j from 1 to n-1:

if (arr[j] > arr[j-1]):

swap(arr[j], arr[j-1]);

sorted = false;

• Time complexity: $O(n^2)$; Spatial Complexity: $\Theta(n)$

sorted is detecting whether the array is already sorted

In this case the lower-bound can be linear (already sorted), so we can only use Big-O for worse-case scenario

Example: MyList

- What are the complexities of each of these operations?
 - prepend(...)
 - append(...)
 - get(0),get(n/2),get(n)
 - delete(0), delete(n/2),
 delete(n)

1. cla	ss MyList {
2.	int value;
3.	MyList* next;
4.	MyList* last;
5. pub	lic:
6.	int length;
7.	MyList();
8.	~MyList();
9.	<pre>void prepend(int val);</pre>
10.	<pre>void append(int val);</pre>
11.	int get(int ind);

- 12. int give(int ind, int val);
- 13. int delete(int ind);

14.};

- Queue: first-in–first-out (FIFO)
 - Front: return frontal element
 - Pop: remove frontal element, return its value
 - Push: insert element to the back

- Queue: first-in–first-out (FIFO)
 - Front: return frontal element
 - Pop: remove frontal element, return its value
 - Push: insert element to the Top • Push: insert element to the back

• Stack: last-in–first-out (LIFO)

- Top: return top element
- Pop: remove top element, return its value

- Exceptions
 - 1. Calling **Pop** on an empty queue
 - 2. Calling Front on an empty queue

P2 Queue

Applications of Queue

- Webserver request processing
 - Multiple clients may be requesting services from one or more servers
 - Some clients may have to wait while the servers are busy
 - Those clients are placed in a queue and serviced in the order of arrival
- Most shared computer services are servers:
 - Web, file, ftp, database, mail, printers, ssh, WOW, etc.

Implementations

- Implementations of queues:
 - Singly linked lists (MyList)
 - Why is it not feasible to use a standard array?
- Requirements
 - All queue operations must run in $\Theta(1)$ time

Queue-as-List Class

- The Queue class using a singly linked list has a single private member variable
- 5: empty returns whether the stack is empty, $\Theta(1)$
- **6:** front

returns the frontal element $\Theta(1)$

- 7: push insert new element to the back $\Theta(1)$
- **8**: pop

remove frontal element, return its value $\Theta(1) \stackrel{9}{\cdot}$;

- 1. class Queue {
- 2. private:
- 3. MyList list;
- 4. public:
- 5. bool empty();
- 6. int front();
- 7. void push(int val);
- 8. int pop();

Queue-as-List Class

- The empty and push functions just 2. return list.length==0; call the appropriate functions of the MyList class
 3. }
- Similar to our Stack implementation, 4. void Queue::push(int val) {
 but on line 5 we have append
 instead of prepend
 1ist.append(val);

1. bool Queue::empty() {

6. }

Queue-as-List Class

- The front and pop functions, however, must check the boundary case
- Just like in Stack

1. int Queue::front() {

- 2. if (empty())
- 3. return -1;
- 4. return list.get(0);

5.}

6. int Queue::pop() {
7. if (empty())
8. return -1;
9. return list.delete(0);
10.}

QUEUE Implementation Using Array

For one-ended arrays, all operations at the back are constant

Find Insert Erase

Front/1 st	Back/n th	
O(1)	O(1)	
O(n)	O(1)	
O(n)	O(1)	

QUEUE Implementation Using Array

Using a two-ended array¹, O(1) are possible by pushing at the back and popping from the front

Find

Insert

Erase

1. Not required

Front/1 st	Back/n th
O(1)	O(1)
O(1)	O(1)
O(1)	O(1)

- Traversal of a directory tree
 - Consider searching the directory structure

Application

- Breadth-First Search (BFS)
 - Search all the directories at one level before descending a level
 - Classic searching algorithm

Tree BFS

- The easiest implementation is:
 - Place the root directory into a queue
 - While the queue is not empty:
 - Pop the directory at the front of the queue
 - Push all of its sub-directories into the queue
- first order

The order in which the directories come out of the queue will be in breadth-

Push the root directory A

Tree BFS

Visited) Not yet **Current** Push X

Tree BFS

Pop A and push its two sub-directories: B and H

Pop B and push C, D, and G

Tree BFS

Pop H and push its one sub-directory I

Pop C: no sub-directories

Pop D and push E and F

Pop G

Pop I and push J and K

Pop E

Pop F

Pop J

Pop K and the queue is empty

• The resulting order A-B-H-C-D-G-I-E-F-J-K

is in breadth-first order

• What is the time and space complexity

Application

Summary

- Lecture 7: Data Structure 1-3
 - Linked List
 - Stack
 - Queue
 - Θ and Big-O Notation

