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Some changes

• Assignment 4 and Lab 4 will be released this week, covering Lecture 7


• No more Assignment 5 and Lab 5: less work for you


• Last batch of OJ problem: 9 problems p025-p033

Admin



Overview

• Focus: Data Structures


• Architecture: Linux/Unix OS


• Core Ideas:


1. Algorithm Analysis


2. Queue



Algorithm Analysis
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Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant 
steps


• The desired behaviour of an Abstract Stack may be reproduced by performing 
all operations at the front
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Algorithm Analysis
• Predict performance


• Compare different data structures and performance


• The performance of different operations of data structures


• The performance of different implementations of data structures


• e.g. Stack: Array implementation vs. linked list implementation


• Avoid major problems in performance in production
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Why Performance?
• Ensure efficient execution of programme


• e.g. terrible optimisation of Microsoft Office on macOS


• Ensure efficient processing of operations


• such as for a web server, handling user requests


• Algorithm Analysis


• Provide guarantees
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Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant 
steps


• The desired behaviour of an Abstract Stack may be reproduced by performing 
all operations at the front
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Problem!
• up to n is hardly a scientific expression


• Actual implementation can take much more


• Addition of 12 and 35: ~10 steps of 
machine code


• This is actually closer to some


•  steps, where  and  are 
constants
an + b a b
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 notationΘ

•  Notation 

• , where  is an asymptotically tight bound for 


• asymptotically tight bound: there exists constants , , and , such that 
for all ,


  

Θ

f(n) = Θ(g(n)) g(n) f(n)

c1 c2 n0
n > n0

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)
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 notationΘ
• Example: 3n + 8 = Θ(n)
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Degree of Change
• Constant:  

actual steps: , where  is a constant


• Linear:  
actual steps: , where  are constants


• Quadratic:  
actual steps: , where  are constants


• ....

Θ(1)
c c

Θ(n)
c1n + c0 ci

Θ(n2)
c2n2 + c1n + c0 ci
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Degree of ChangeP0 
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Θ(nn) Θ(n3) Θ(n2) Θ(n)

Θ(log n)

Θ(1)

• Say you are using  to describe 
time complexity for an operation 
with  as input size


• e.g.  
There is always an , after which 
the higher degrees of change will 
make the operation more costly

Θ

n

Θ(n) > Θ(log n) > Θ(1)
n0

n0



Big-O notation
•  Notation:  

• asymptotically tight bound: there exists constants , , and , such that for all 
,


  


• Big-O Notation: , where  is an asymptotical upper bound for  

• asymptotical upper bound: there exists constants , and , such that for all ,


  

Θ f(n) = Θ(g(n))

c1 c2 n0
n > n0

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

f(n) = O(g(n)) g(n) f(n)

c n0 n > n0

f(n) ≤ cg(n)
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Big-O notation
• Example: 3n + 8 = O(n)
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Big-O notation

• Why Big-O?


• If an algorithm is , it is  
But NOT the other way, since  only gives you the upper bound


• Sometimes calculating  is not practical, but Big-O tells us the worst-case 
scenario


•  also gives us the lower-bound, which we do not usually care about

Θ(g(n)) O(g(n))
O(g(n))

Θ

Θ
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Degree of Change

• Constant:  
e.g. perform a single addition


• Linear:  
e.g. sum up  numbers


• Quadratic:  
e.g. selection sort, bubble sort


• ....

O(1)

Θ(n)
n

Θ(n2)
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Degree of ChangeP0 
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• Say you are using Big-O to 
describe time complexity for an 
operation with  as input size


• e.g.  
There is always an , after which 
the higher degrees of change will 
make the operation more costly

n

O(n) > O(log n) > O(1)
n0

n0



Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant 
steps


• The desired behaviour of an Abstract Stack may be reproduced by performing 
all operations at the front
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Complexities
• Time complexity


• Estimation of time it takes to execute...


• 1 second on modern 3.0GHz CPU: roughly  steps, 
e.g. , ; , ;


• Sometimes constants do vary 

• Space complexity


• Estimation of memory space / storage space it takes

109

O(n3) n ≤ 1000 O(n2) n ≤ 10000
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Example: Bubble Sort 1

• Time complexity: ; Spatial Complexity: Θ(n2) Θ(n)
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 func BubbleSort(arr): 

     for i from 1 to n: 

         for j from 1 to n-1: 

             if (arr[j]> arr[j-1]): 

                swap(arr[j], arr[j-1])



Example: Bubble Sort 2

• Time complexity: ; Spatial Complexity: O(n2) Θ(n)
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 func BubbleSort(arr): 

     sorted = false; 

     while sorted == false: 

         sorted = true; 

         for j from 1 to n-1: 

             if (arr[j]> arr[j-1]): 

                 swap(arr[j], arr[j-1]); 

                 sorted = false;

sorted is detecting whether 
the array is already sorted

In this case the lower-bound 
can be linear (already sorted), 
so we can only use Big-O for 

worse-case scenario



Example: MyList
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• What are the complexities of each of 
these operations?


• prepend(...) 

• append(...) 

• get(0), get(n/2), get(n)


• delete(0), delete(n/2), 
delete(n)

1. class MyList { 

2.     int value; 

3.     MyList* next; 

4.     MyList* last; 

5. public: 

6.     int length; 

7.     MyList(); 

8.     ~MyList(); 

9.     void prepend(int val); 

10.    void append(int val); 

11.    int get(int ind); 

12.    int give(int ind, int val); 

13.    int delete(int ind); 

14.};



Queue
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Queue

• Queue: first-in–first-out (FIFO)


• Front: return frontal element


• Pop: remove frontal element, return 
its value


• Push: insert element to the back
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Queue

• Queue: first-in–first-out (FIFO)


• Front: return frontal element


• Pop: remove frontal element, return 
its value


• Push: insert element to the back
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• Stack: last-in–first-out (LIFO)


• Top: return top element


• Pop: remove top element, return its 
value


• Push: insert element to the Top



Queue

• Exceptions


1. Calling Pop on an empty queue


2. Calling Front on an empty queue
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Applications of Queue
• Webserver request processing


• Multiple clients may be requesting services from one or more servers


• Some clients may have to wait while the servers are busy


• Those clients are placed in a queue and serviced in the order of arrival


• Most shared computer services are servers:


• Web, file, ftp, database, mail, printers, ssh, WOW, etc.
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Implementations

• Implementations of queues:


• Singly linked lists (MyList)


• Why is it not feasible to use a standard array?


• Requirements


• All queue operations must run in Θ(1) time
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Queue-as-List Class
• The Queue class using a singly linked list 

has a single private member variable


• 5: empty  
returns whether the stack is empty, 


• 6: front  
returns the frontal element 


• 7: push  
insert new element to the back 


• 8: pop  
remove frontal element, return its value 

Θ(1)

Θ(1)

Θ(1)

Θ(1)
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1. class Queue { 

2.   private: 

3.     MyList list; 

4.   public: 

5.     bool empty(); 

6.     int front(); 

7.     void push(int val); 

8.     int pop(); 

9. };
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Queue-as-List Class

• The empty and push functions just 
call the appropriate functions of the 
MyList class


• Similar to our Stack implementation, 
but on line 5 we have append 
instead of prepend
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1. bool Queue::empty() { 

2.   return list.length==0; 

3. } 

4. void Queue::push(int val) { 

5.   list.append(val); 

6. }
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Queue-as-List Class

• The front and pop functions, 
however, must check the boundary 
case


• Just like in Stack
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1. int Queue::front() { 

2.     if ( empty() ) 

3.         return -1; 

4.     return list.get(0); 

5. } 

6. int Queue::pop() { 

7.     if ( empty() ) 

8.         return -1; 

9.     return list.delete(0); 

10.}
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Implementation Using Array
	 For one-ended arrays, all operations at the back are constant
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Implementation Using Array
Using a two-ended array1,  are possible by pushing at the back and popping from the frontO(1)
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Application
• Traversal of a directory tree


• Consider searching the directory structure
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Tree BFS
• Breadth-First Search (BFS) 

• Search all the directories at one level before descending a level


• Classic searching algorithm
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Tree BFS
• The easiest implementation is:


• Place the root directory into a queue


• While the queue is not empty:


• Pop the directory at the front of the queue


• Push all of its sub-directories into the queue


• The order in which the directories come out of the queue will be in breadth-
first order
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Tree BFS
	 Push the root directory A
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Tree BFS
	 Pop A and push its two sub-directories:  B and H
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Tree BFS
	 Pop B and push C, D, and G
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Tree BFS
	 Pop H and push its one sub-directory I
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Tree BFS
	 Pop C:  no sub-directories
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Tree BFS
	 Pop D and push E and F
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Tree BFS
	 Pop G
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Tree BFS
	 Pop I and push J and K
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Tree BFS
	 Pop E
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Tree BFS
	 Pop F
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Tree BFS
	 Pop J
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Tree BFS
	 Pop K and the queue is empty
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Application

• The resulting order


 A-B-H-C-D-G-I-E-F-J-K 

 is in breadth-first order


• What is the time and space complexity of this algorithm?
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Summary

• Lecture 7: Data Structure 1-3


• Linked List


• Stack


• Queue


•  and Big-O NotationΘ
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