B

27.07.20 10:47

CSCI 125
Introduction to Computer Science and
Programming ||
Lecture 7: Data Structure Il

i — - y = W & v e - = MAreit) F;q
J 1 ;!'5'3'4’?* g O g O “‘4;45"3‘351 {3‘" :
:P '1“"‘ tq' S {:f .': P~ ’1#”’ = &1 " - P

‘e .::‘1 P‘ - i !

T r 'y 'y ¢ et f=o(»pa
¥

533
Al

' I
=l
-

T et

4 @EEY (@

Jetic Gu
2020 Summer Semester (S2)

e Focus: Data Structures
e Architecture: Linux/Unix OS
e Core ldeas:

1. Stack, Analysis of Stack

Stack

Abstract Stack

e Also called a last-in—first-out (LIFO) behaviour

e Graphically, we may view these operations as follows:

:l.llllllllllllllll.llllllll:

Push

Top Top

e T[here are two exceptions associated with abstract stacks:

e |t is an undefined operation to call either pop or top on an empty stack

Applications

e Numerous applications:
e Parsing code:
 Matching parenthesis
e XML (e.g., XHTML)
* Tracking function calls
e Dealing with undo/redo operations
* Reverse-Polish calculators
 Assembly language
* The stack is a very simple data structure

e Given any problem, if it is possible to use a stack, this significantly simplifies the solution

Implementations

e We will look at two implementations of stacks
e Singly linked lists

e One-ended arrays

I Linked-List Implementation

e Operations at the front of a singly linked list are all very efficient: constant

steps
list_head > > OO+ —>Q—>O—>§)—>@
list tail

Front/1st Back/nth

Find constant constant
Insert constant constant
Erase constant upton

e The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

4 Implementation Using MyList

1. class MyList {
2. int value;
3. MyList* next;
4 . MyList* last;
e Recall the definition of MyList 5. public:
0. int length;
e Class practice 5 (p026) /- MyList ()
8. ~MyList () ;
: - 9. Ne! d(int 1);
» We can implement a stack using void prependlint vad
MYLiSt 10. volid append(int val);
11. int get(int 1ind);
12. int give(int ind, 1nt wval);
13. int delete(int ind);

14.1};

Stack-as-List Class

e The Stack class using a singly linked 1. class Stack {
list has a single private member variable
2 . private:
° Olempty | 3. MyList list;
returns whether the stack is empty
4. public:
* 6! top 5. bool empty () ;
returns the value of the top element
6. int top();
’ 7Hmﬁﬂl 7. vold push(int wval);
iInsert new element at the top
g . int pop() ;
e 8:pop 0. }:

remote top element

Stack-as-List Class

e Do we need another constructor for
Stack here?

e Why?

e Because 1ist Is declared, the

compiler will call the constructor of
the MyList class when the Stack

IS constructed

1.

oo OO I o U

class Stack {

. 17

private:

MyList list;
public:

bool empty () ;

int top():;

vold push(int wval);

int pop();

Stack-as-List Class

1. bool Stack::emptv () {

2. return list.length==0;
. . 3.}
e The empty and push functions just
call the appropriate functions of the
MyList class 4. void Stack::push(int val) {

0. list.prepend(val) ;

Stack-as-List Class

1. 1int Stack::top () {
2. if (empty ())
3. return -1;
4 . return list.get (0);
5. }

e The top and pop functions, however,

must check the boundary case

6. 1nt Stack::pop () {
7. if (empty ())
8. return -1;
9. return list.delete (0);

10.}

4 Implementation Using MyList

For one-ended arrays, all operations at the back are constant
0
-+ I

Front/1st Back/nth
Find constant constant
Insert up ton constant
Erase up ton constant

Stack-as-Array Class

e Implementation using array 1. class Stack {
dynamic allocation so more extensible
2 . private:
* Olempty | 3. int *array;
returns whether the stack is empty
4. public:
* B top 5. bool empty () ;
returns the value of the top element
6. int top () ;
’ THmﬁﬂl 7. vold push(int wval);
iInsert new element at the top
g . int pop() ;
e 8! pop 5.)

remote top element

Stack-as-Array Class

e \We need additional information, including:

e The number of objects currently in the stack

1nt stackSize;

e The capacity of the array

int arrayCapacity;

Stack-as-Array Class

 Implementation using array - class Stack |

dynamic allocation so more extensible . private:
int stackSize;

int arrayCapacity;

e 5. empty

returns whether the stack is empty int *array;
. public:
e 0. top

returns the value of the top element

Stack(1nt = 10);

~Stack () ;

o o I o U s w D

bool t ;
e 7:push 0L empty)

insert new element at the top 10. int top();

11. wvoid push(i1nt wval);
e 8:pop 12. int pop();
remote top element 13.};

Constructor

e [he class is only storing the address
of the array

e We must allocate memory for the
array and initialise the member
variables

e The call to new
int [arrayCapacity] makes a
request to the operating system for
arrayCapacity member

1. Stack::Stack(1nt n) {

2 .
3.

oYy U

stackSi1ize = 0;
arrayCapacity =max(l,n);
array =

new 1nt[arrayCapacity];

Destructor

e The call to new In the constructor
requested memory from the L. Stack::~Stack() {
operating system 2 . delete array;
e The destructor must return that 3.}
memory to the operating system

Empty

1. bool Stack::empty () {

* The stack is empty Iif the stack sizeis
Zero

return (stackSize == 0);

3. }

Top

1. 1nt Stack::top() {
2. 1f (empty ()) |
3. return -1;
e |f there are n objects in the stack, the
last is located at index n -1 *. }
0. return array[stackSize -

1]
0. }

Pop

. 1nt Stack::pop () {

. . . . 1f (empty ()) A
e Removing an object simply involves

reducing the size return -1;

o N

J

——stackSize;

e By decreasing the size, the previous

top of the stack is now at the location

stackSize return array[stackSize];

N O Ul

Push

1. void Stack::push(int wval) {

2. 1f (stackSize==arrayCapacity)
e Pushing an object onto the stack can 3. return;
only be performed if the array is not |
£yl 4. array|[stackSize] = wval;

5. ++stackSize;

Others*

e |f the array is filled, we have five options:
* |ncrease the size of the array
e Throw an exception”
e |gnore the element being pushed
 Replace the current top of the stack

 Put the pushing process to “sleep” until something else removes
the top of the stack™

 |nclude a member function bool full();

* Not required

Array Capacity

If dynamic memory is available, the best option is to increase the array
capacity

If we increase the array capacity, the question is:
e How much?
e By a constant? array capacity += c;
e By a multiple? array capacity *= c;

Array Capacity

count == 8
array _capacity == 8
array

e First, let us visualise what must occur
to allocate new memory

RIREEREBRE

Array Capacity

count == 8
array _capacity == 8

e First, this requires a call to new array tmp
int [N] where N Is the new capacity

e \We must have access to this so we
must store the address returned by
new in a local variable, say tmp

C)(D|r-|23hﬂ|—4|>>kg
HEEREER

Array Capacity

count == 8
array _capacity == 8
array tmp

e Next, the values must be copied over

ofo]-[=[m[-[>]5
ofo]r|m[m]+[>]=

Array Capacity

count == 8
array _capacity == 8

array\\\\a‘

tmp

e Deallocate original memory

ofo]r[m|m[+]>|=

Array Capacity

count == 8
array capacity == 16

e Finally, the appropriate member
variables must be reassigned

olo|—|=x|m|-|=]|=

P1
Stack

Array Capacity

2. void double capacity() {

3.

— O 00 ~J N Ul

int *tmp = new 1nt[Z2*arrayCapacity];

for (int 1i=0; i<arrayCapacity;

J

tmp[1] = arrayl[i];

delete array;

array = tmp;

arrayCapacity *= 2;

1++) {

count == 8
array capacity == 16
array

ofo]r[m]|m[+]>|=

tmp

Array Capacity

e Back to the original question;
e How much do we change the capacity?
e Add a constant?
e Multiply by a constant?

e First, we recognise that any time that we push onto a full stack, this requires »
copies and the run time is up to N steps

e Therefore, push is usually constant except when new memory is required

Array Capacity

e Consider the case of increasing the capacity by 1 each time the array is full

e With each insertion when the array is full, this requires all entries to be
copied
.
E
B e
o g 0 e
G I
R
O
B N

Array Capacity

e Suppose we double the number of entries each time the array is full

e Now the number of copies appears to be significantly fewer

Array Capacity

e What if we increase the array size by a larger constant?

e For example, increase the array size by 4, 8, 1007

Bracket Matching

Tutorial: Bracket Matching

