
27.07.20 10:47CSCI 125
Introduction to Computer Science and

Programming II
Lecture 7: Data Structure II

Jetic Gū

2020 Summer Semester (S2)

Overview

• Focus: Data Structures

• Architecture: Linux/Unix OS

• Core Ideas:

1. Stack, Analysis of Stack

Stack

Sum
mary

P1
Stack

Abstract Stack
• 	Also called a last-in–first-out (LIFO) behaviour

• Graphically, we may view these operations as follows:

• 	There are two exceptions associated with abstract stacks:

• It is an undefined operation to call either pop or top on an empty stack

Conc
ep

t

P1
Stack

Applications
• Numerous applications:

• Parsing code:

• Matching parenthesis

• XML (e.g., XHTML)

• Tracking function calls

• Dealing with undo/redo operations

• Reverse-Polish calculators

• Assembly language

• The stack is a very simple data structure

• Given any problem, if it is possible to use a stack, this significantly simplifies the solution

Conc
ep

t

P1
Stack

Implementations

• We will look at two implementations of stacks

• Singly linked lists

• One-ended arrays

Conc
ep

t

P1
Stack

Linked-List Implementation

• Operations at the front of a singly linked list are all very efficient: constant
steps

• The desired behaviour of an Abstract Stack may be reproduced by performing
all operations at the front

Conc
ep

t

P1
Stack

Front/1st Back/nth

Find constant constant
Insert constant constant
Erase constant up to n

Implementation Using MyList

• Recall the definition of MyList

• Class practice 5 (p026)

• We can implement a stack using
MyList

Conc
ep

t

1. class MyList {

2. int value;

3. MyList* next;

4. MyList* last;

5. public:

6. int length;

7. MyList();

8. ~MyList();

9. void prepend(int val);

10. void append(int val);

11. int get(int ind);

12. int give(int ind, int val);

13. int delete(int ind);

14.};

P1
Stack

Stack-as-List Class
• The Stack class using a singly linked

list has a single private member variable

• 5: empty  
returns whether the stack is empty

• 6: top  
returns the value of the top element

• 7: push  
insert new element at the top

• 8: pop  
remote top element

Conc
ep

t

1. class Stack {

2. private:

3. MyList list;

4. public:

5. bool empty();

6. int top();

7. void push(int val);

8. int pop();

9. };

P1
Stack

Stack-as-List Class

• Do we need another constructor for
Stack here?

• Why?

• Because list is declared, the
compiler will call the constructor of
the MyList class when the Stack
is constructed

Conc
ep

t

1. class Stack {

2. private:

3. MyList list;

4. public:

5. bool empty();

6. int top();

7. void push(int val);

8. int pop();

9. };

P1
Stack

Stack-as-List Class

• The empty and push functions just
call the appropriate functions of the
MyList class

Conc
ep

t

1. bool Stack::empty() {

2. return list.length==0;

3. }

4. void Stack::push(int val) {

5. list.prepend(val);

6. }

P1
Stack

Stack-as-List Class

• The top and pop functions, however,
must check the boundary case

Conc
ep

t

1. int Stack::top() {

2. if (empty())

3. return -1;

4. return list.get(0);

5. }

6. int Stack::pop() {

7. if (empty())

8. return -1;

9. return list.delete(0);

10.}

P1
Stack

Implementation Using MyList
	 For one-ended arrays, all operations at the back are constant

Conc
ep

t

Front/1st Back/nth

Find constant constant
Insert up to n constant
Erase up to n constant

P1
Stack

Stack-as-Array Class
• Implementation using array 

dynamic allocation so more extensible

• 5: empty  
returns whether the stack is empty

• 6: top  
returns the value of the top element

• 7: push  
insert new element at the top

• 8: pop  
remote top element

Conc
ep

t

1. class Stack {

2. private:

3. int *array;

4. public:

5. bool empty();

6. int top();

7. void push(int val);

8. int pop();

9. };

P1
Stack

Stack-as-Array Class

• 	We need additional information, including:

• The number of objects currently in the stack

 int stackSize;

• The capacity of the array

 int arrayCapacity;

Conc
ep

t

P1
Stack

Stack-as-Array Class
• Implementation using array 

dynamic allocation so more extensible

• 5: empty  
returns whether the stack is empty

• 6: top  
returns the value of the top element

• 7: push  
insert new element at the top

• 8: pop  
remote top element

Conc
ep

t

1. class Stack {

2. private:

3. int stackSize;

4. int arrayCapacity;

5. int *array;

6. public:

7. Stack(int = 10);

8. ~Stack();

9. bool empty();

10. int top();

11. void push(int val);

12. int pop();

13.};

P1
Stack

Constructor

• The class is only storing the address
of the array

• We must allocate memory for the
array and initialise the member
variables

• The call to new
int[arrayCapacity] makes a
request to the operating system for
arrayCapacity member

Conc
ep

t

1. Stack::Stack(int n) {

2. stackSize = 0;

3. arrayCapacity =max(1,n);

4. array =

5. new int[arrayCapacity];

6. }

P1
Stack

Destructor

• The call to new in the constructor
requested memory from the
operating system

• The destructor must return that
memory to the operating system

Conc
ep

t

1. Stack::~Stack() {

2. delete array;

3. }

P1
Stack

Empty

• The stack is empty if the stack size is
zero

Conc
ep

t

1. bool Stack::empty() {

2. return (stackSize == 0);

3. }

P1
Stack

Top

• If there are n objects in the stack, the
last is located at index n – 1

Conc
ep

t

1. int Stack::top() {

2. if (empty()) {

3. return -1;

4. }

5. return array[stackSize -
1];

6. }

P1
Stack

Pop

• Removing an object simply involves
reducing the size

• By decreasing the size, the previous
top of the stack is now at the location
stackSize

Conc
ep

t

1. int Stack::pop() {

2. if (empty()) {

3. return -1;

4. }

5. --stackSize;

6. return array[stackSize];

7. }

P1
Stack

Push

• Pushing an object onto the stack can
only be performed if the array is not
full

Conc
ep

t

1. void Stack::push(int val){

2. if (stackSize==arrayCapacity)

3. return;

4. array[stackSize] = val;

5. ++stackSize;

6. }

P1
Stack

Others*
• If the array is filled, we have five options:

• Increase the size of the array

• Throw an exception*

• Ignore the element being pushed

• Replace the current top of the stack

• Put the pushing process to “sleep” until something else removes 
the top of the stack*

• Include a member function bool full();

Conc
ep

t

* Not required

P1
Stack

Array Capacity

	 If dynamic memory is available, the best option is to increase the array
capacity

	 If we increase the array capacity, the question is:

• How much?

• By a constant?		 array_capacity += c;

• By a multiple?	 	 array_capacity *= c;

Conc
ep

t

P1
Stack

Array Capacity

• First, let us visualise what must occur
to allocate new memory

Conc
ep

t

P1
Stack

• First, this requires a call to new
int[N] where N is the new capacity

• We must have access to this so we
must store the address returned by
new in a local variable, say tmp

Array Capacity

Conc
ep

t

P1
Stack

Array Capacity

Conc
ep

t

P1
Stack

• 	Next, the values must be copied over

Array Capacity

Conc
ep

t

W

P1
Stack

• Deallocate original memory

Array Capacity

Conc
ep

t

P1
Stack

• Finally, the appropriate member
variables must be reassigned

Array Capacity

2. void double_capacity() {

3. int *tmp = new int[2*arrayCapacity];

4. for (int i=0; i<arrayCapacity; i++){

5. tmp[i] = array[i];

6. }

7. delete array;

8. array = tmp;

9. arrayCapacity *= 2;

10.}

Conc
ep

t

P1
Stack

Array Capacity
• Back to the original question:

• How much do we change the capacity?

• Add a constant?

• Multiply by a constant?

• First, we recognise that any time that we push onto a full stack, this requires n
copies and the run time is up to N steps

• Therefore, push is usually constant except when new memory is required

Conc
ep

t

P1
Stack

Array Capacity
• Consider the case of increasing the capacity by 1 each time the array is full

• With each insertion when the array is full, this requires all entries to be
copied

Conc
ep

t

P1
Stack

Array Capacity

Conc
ep

t

P1
Stack

• Suppose we double the number of entries each time the array is full

• Now the number of copies appears to be significantly fewer

Array Capacity
• 	What if we increase the array size by a larger constant?

• For example, increase the array size by 4, 8, 100?

Conc
ep

t

P1
Stack

Bracket Matching

Sum
mary

P2
Bracket Matching

Tutorial: Bracket Matching

