
27.07.20 10:47CSCI 125
Introduction to Computer Science and

Programming II
Lecture 6: User Class III

Jetic Gū

2020 Summer Semester (S2)

Overview

• Focus: Basic C/C++ Syntax

• Architecture: Linux/Unix OS

• Core Ideas:

1. Inheritance

C++ Class

• User defined data types

• Members: variables and function

• access specifiers

• Constructors; Destructors

• Pointer Operations

Rev
iew

P0
XXXXXXX

P0
Review

Inheritance

Sum
mary

P1
Inheritance

Not of any fortune though

What is inheritance?

• One of the most important features of OOP

• Not only are objects grouped together as classes, classes themselves may have
commonalities

• Inheritance  
the mechanism by which one class acquires the properties of another class

• Base class: provide more fundamental functions/properties

• Derived class: provide more specified functions/properties

Conc
ep

t

P0
XXXXXXX

P1
Inheritance

Hierarchy

• Concepts/Classes at higher levels are more general

• Concepts/Classes at lower levels are more specific (inherit properties of
concepts at higher levels)

Conc
ep

t

Vehicle

Wheeled vehicle Boat

Car Bicycle

4-door2-door

P1
Inheritance

Why Inheritance?

1. Reuse existing universal structures and methods

2. Extend existing class to incorporate new features, without sacrificing
backward compatibility

3. Modify existing class by overloading member functions

Conc
ep

t

P1
Inheritance

C++ Inheritance

• The language mechanism by which one class acquires the properties (data
and operations) of another class

• Base Class (or superclass): the class being inherited from

• Derived Class (or subclass): the class that inherits

Conc
ep

t

P1
Inheritance

C++ Inheritance
• Syntax

 class ClassName: accessIdentifier BaseClass {

 // regular class declaration

 };

• Addition to normal class declaration:

• Colon

• Access identifier : [private, protected, public]

• BaseClass: name of the Class you want to inherit

Conc
ep

t

P1
Inheritance

What do you inherit?
(class access specifier Public)

Conc
ep

t

• Class1: superclass of Class2

• Class2: derived subclass of Class1

• What does Class2 get?

• Class1’s public members 
-> Class2’s public

• Class1’s private members 
-> Accessible through Class1’s
public functions

1. class Class1 {

2. public:

3. ...public members...

4. private:

5. ...private members...

6. };

7.

8. class Class2: public Class1 {

9.

10. };

P1
Inheritance

What do you inherit?
(class access specifier Public)

Conc
ep

t

• Class1’s public members
become Class2’s public
members

• In this case, beingEaten can be
used by all instances of MyFood
class, anywhere

1. class Food {

2. public:

3. void beingEaten();

4. };

5.

6. class MyFood: public Food {

7. } cheese;

8. cheese.beingEaten();

P1
Inheritance

What do you inherit?
(class access specifier Public)

Conc
ep

t

• Class1’s private members can
only be accessed by Class1’s
public functions

• In this case, getCal can be used
by all instances of MyFood class,
anywhere

• cal can be accessed by cheese
only through getCal

1. class Food {

2. int cal; // private

3. public:

4. int getCal()

5. {return cal;}

6. };

7. class MyFood: public Food {

8. ...cal... // no good

9. ...getCal()... // works

10.};

P1
Inheritance

What do you inherit?
(class access specifier Public)

Conc
ep

t

P1
Inheritance

Access public protected private

Same class yes yes yes

Derived
classes yes yes no

Outside
classes yes no no

• public members of superclass 
same as public members of
subclass

• private members of superclass 
accessible only through inherited
public functions

What do you inherit?
(class access specifier Public)

Conc
ep

t

P1
Inheritance

Access public protected private

Same class yes yes yes

Derived
classes yes yes no

Outside
classes yes no no

• protected

• For superclass, is the same as
private members

• For subclass, is the same as it’s
own protected members

•Why? 
You may have properties wanting
to be available for subclasses,
but not outside of the class

Example
(class access specifier Public)

• Class1’s private members can
only be accessed by Class1’s
public functions

• In this case, getCal can be used by
all instances of MyFood class,
anywhere

• cal can be accessed by cheese
only through getCal

Te
ch

nic
al

P0
XXXXXXX

1. class Food {

2. int cal; // private

3. public:

4. int getCal()

5. {return calorie;}

6. };

7. class MyFood: public Food {

8. } cheese;

9. cout << cheese.cal; // no good

10.cout << cheese.getCal;

P1
Inheritance

Other Inheritance
• protected inheritance

• SuperClass’s public and protected members become subclass’s protected
members

• SuperClass’s private members remain not directly accessible

• private inheritance

• SuperClass’s public and protected members become subclass’s private
members

• SuperClass’s private members remain not directly accessible

Te
ch

nic
al

P0
XXXXXXX

P1
Inheritance

Static Member Variables

• Member variables can be defined as
static so that its value is shared
by all instances/objects of that class

• line 6: initialising outside the class

Te
ch

nic
al

P0
XXXXXXX

1. class Dummy {

2. public:

3. static int n;

4. Dummy () { n++; };

5. };

6. int Dummy::n=0;

7. Dummy a; // n==1

8. Dummy b; // n==2

9. cout << a.n << '\n';

10.Dummy * c = new Dummy; // n==3

11.cout << Dummy::n << '\n';

P1
Inheritance

More About Class

• Virtual members

• Static member functions

• Const member functions

• Class templates

• Class polymorphism

Futu
re

P2
Future

1. For further readings, please refer to C++ reference or our textbook

