
16.07.20 15:58CSCI 125
Introduction to Computer Science and

Programming II
Lecture 6: User Class II

Jetic Gū

2020 Summer Semester (S2)

Overview

• Focus: Basic C/C++ Syntax

• Architecture: Linux/Unix OS

• Core Ideas:

1. Pointer Operations of Class: new and delete, destructor

2. Tutorial: C++ list class

Data Types
• Primary √

• Integers, Characters, Boolean √

• Floating point √

• Void√

• Derived

• Function√, Array√, Pointer, Reference√

• User Defined

• Struct, Class, Enumerate√, Typedef√

Rev
iew

P0
Review

Class Pointer
Operations

Sum
mary

P1
Class Pointer

There are a few different things

C++ Class

• User defined data types

• Members: variables and function

• access specifiers

• Constructors

Rev
iew

P0
XXXXXXX

P1
Class Pointer

Destructors of Class

• Stuff to do when a class instance is
"destructed"

• When exiting the scope

• The variable is manually deleted

• Download H805

• Look at demo1.cpp

Te
ch

nic
al

P0
XXXXXXX

3. class Example {

4. public:

5. Example();

6. ~Example();

7. };

8. Example::Example() {

9. cout << "Constructed!" << endl;

10. }

11. Example::~Example() {

12. cout << "Destroyed!" << endl;

13. }

P2
Constructor

Pointer Class Instances

• Declaration

• ClassName * variableName;

• What is this?

• A pointer variable: a small memory space is reserved for a memory address

• No further memory for the actual instance has been allocated yet!

Conc
ep

t

P0
XXXXXXX

P1
Class Pointer

Pointer Class Instances

1. string *str;

• This variable store a memory address, that is going to be treated as the
address of a string instance object

• How do we manually allocate space for it?

Conc
ep

t

P0
XXXXXXX

P1
Class Pointer

Pointer Class Instances

 ClassName * p;

 p = new ClassName;

• Allocate memory space for a ClassName instance, and return it’s address to
p

 delete p;

• Recycle the memory space starting at address p

Conc
ep

t

P0
XXXXXXX

P1
Class Pointer

H805 Demo2
• Download H805

• Look at demo2.cpp

• Line5: new string

• This will call the constructor!

• Line10: delete str

• This will call the destructor!

Te
ch

nic
al

P1
Class Pointer

5. string *str = new string;

6. cin >> *str;

7. cout << "add: " << str;

8. cout << "; value: " <<
*str;

9. cout << endl;

10.delete str;

Accessing Members

 string * p = new string;

 p.c_str(); // this will NOT work

• p is a pointer now, it doesn’t have member function c_str

• How do we access members of a pointer class variable?

 p->c_str(); // this will work

Conc
ep

t

P0
XXXXXXX

P1
Class Pointer

H805 Demo3
• Download H806

• Look at demo3.cpp

• Line7: does not work

• Line8:

• str is a pointer

• c_str is a member function of string
objects

• access: Pointer->Member

Te
ch

nic
al

P1
Class Pointer

5. string *str = new string;

6. cin >> *str;

7. // cout << str.c_str();

8. cout << str->c_str();

9. cout << endl;

10.delete str;

Accessing Members

Conc
ep

t

P0
XXXXXXX

1. http://www.cplusplus.com/doc/tutorial/classes/

P1
Class Pointer

expression can be read as

*x pointed to by x

&x address of x

x.y member y of object x

x->y member y of object pointed to by x

(*x).y member y of object pointed to by x (equivalent to
the previous one)

x[0] first object pointed to by x

x[1] second object pointed to by x

x[n] (n+1)th object pointed to by x

this pointer

Conc
ep

t

P0
XXXXXXX

P1
Class Pointer

• Each object also has a this
pointer, which is private

• Gives members information on
this object’s address

3. class MyClass {

4. public:

5. MyClass* add()

6. {return this;}

7. };

10. MyClass x;

11. cout << (&x == x.add()) << endl;

Tutorial: C++ list class

Sum
mary

P2
Tutorial: List

Objective

• In Python list, you can perform 2 operations that are quite handy

• someList.insert(0, x)
additional element at someList[0] == x, and move all subsequent stuff
rightwards

• someList.append(x)  
additional element at someList[-1] == x

• You can always add stuff to someList until you run out of memory

Rev
iew

P2
Tutorial: List

C++

• C++ arrays

• Cannot append elements 
unless there’s enough space

• Cannot prepend elements 
You have to move everything around to make this happen, this takes time

• Fixed length from declaration

Rev
iew

P2
Tutorial: List

Objective Class: MyList

• Use pointers to chain objects

• Support prepend and append operations

• Support indexed access and access using index -1 (last element)

Conc
ep

t

P2
Tutorial: List

Objective Class: MyList

• Chained elements 
next points to the next element in
the list; 
last points to the last element in
the list;

• 10: Get value at index ind

• 11: Write value val to index ind

Te
ch

nic
al

1. class MyList {

2. int value;

3. MyList* next;

4. MyList* last;

5. public:

6. int length;

8. void prepend(int val);

9. void append(int val);

10. int get(int ind);

11. int give(int ind, int val);

12. MyList(); ~MyList();

13.};

P2
Tutorial: List

Objective Class: MyList

Te
ch

nic
al

P2
Tutorial: List

a 7 8 9next next next

1. MyList a;

2. a.append(7);

3. a.append(8);

4. a.append(9);

last

Object

Pointer Object

index: 0 index: 1 index: 2

Objective Class: MyList

Te
ch

nic
al

P2
Tutorial: List

5. a.get(2); // access index 2

1. go to a.next;

2. go to a.next->next;

3. go to a.next->next->next;

a 7 8 9next next next

last

index: 0 index: 1 index: 2

