

CSCI 150 Introduction to Digital and Computer System Design Lecture 3: Combinational Logic Design VII

Jetic Gū 2020 Summer Semester (S2)

Overview

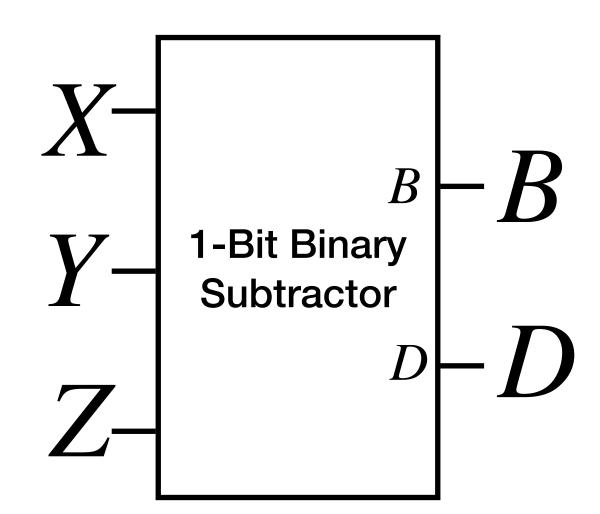
- Focus: Arithmetic Functional Blocks
- Architecture: Combinatory Logical Circuits
- Textbook v4: Ch4 4.3, 4.4, 4.7; v5: Ch2 2.9, Ch3 3.10, 3.11
- Core Ideas:
 - 1. Subtraction II
 - 2. Subtraction III
 - 3. VHDL

Unsigned Binary Subtraction I

Review

Unsigned 1-bit Binary Subtraction

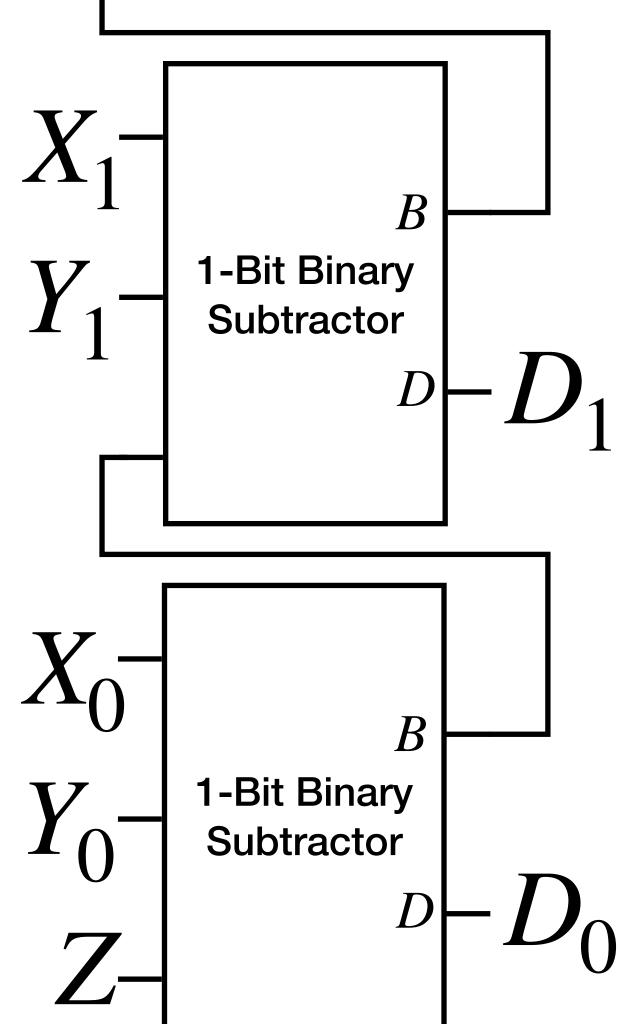
- Implementation using 3-to-8 Decoder
 - $B = \sum m(1,2,3,7)$
 - $D = \sum m(1,2,4,7)$



Unsigned Binary
Subtraction

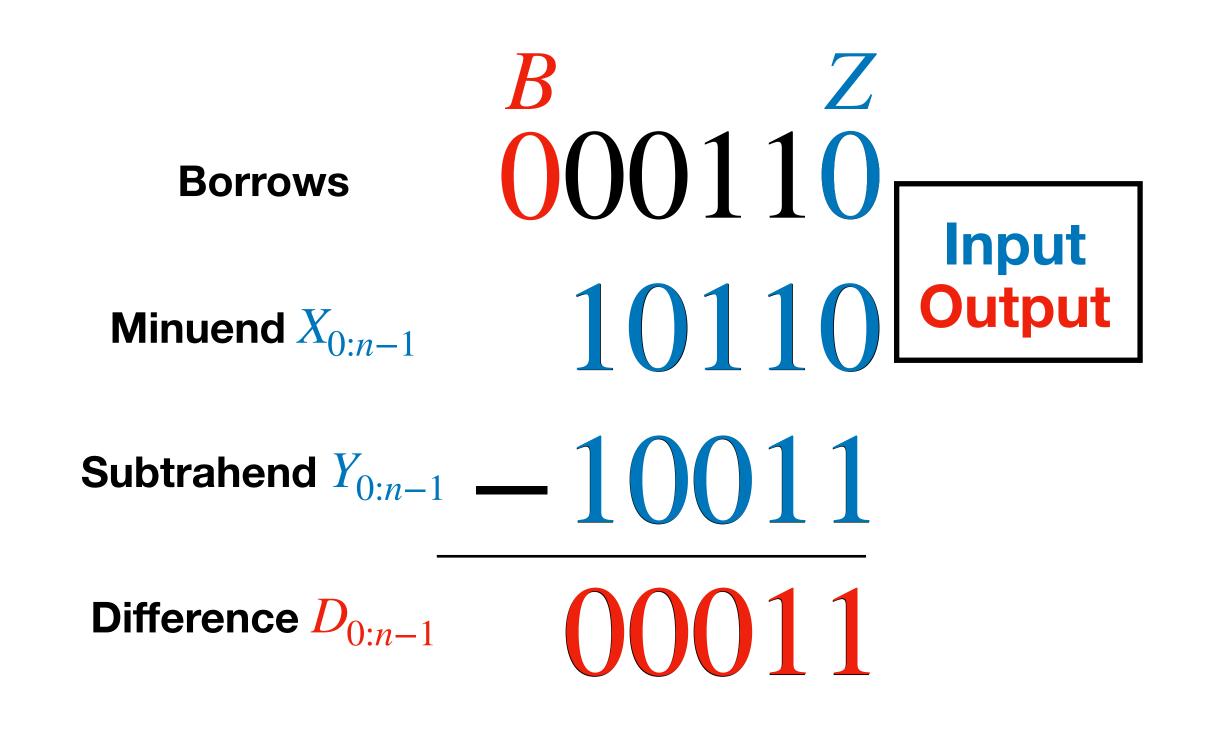
Technology

1 bit Unsigned Subtractor



P1

Subtraction



Colien,

Unsigned Binary Subtraction II

X-Y when Y>X

What we have so far

- Binary Adder
- Binary Subtractor $(X Y, X \ge Y)$

Unsigned Binary Subtraction Subtraction Output Description Output Description Description

$$X > Y, F = X - Y$$

- We learned to perform subtraction, by subtracting the smaller number from the greater number
- What if it's the opposite? i.e. X < Y, F = X Y?

Unsigned Binary Subtraction

B	0	rr	<u>'</u>	W	15
	V		U	VV	J

Minuend

10011

Subtrahend

Difference

Borrows

Minuend

()()11()

Subtrahend

Difference

Unsigned Binary Subtraction

Borrows	011000
Minuend	10011
Subtrahend	-00110
Difference	01101

100110 **Borrows Minuend Subtrahend Difference**

This is correct

This is incorrect

Unsigned Binary Subtraction Subtraction

 Standard subtraction module works if the Minuend is bigger than the Subtrahend

Borrows	011000
Minuend	10011
Subtrahend	-00110
Difference	01101

100110
00110
— 10011
10011

This is correct

This is incorrect

Unsigned Binary Subtraction

Standard subtraction module works if the Minuend is bigger than the

Subtrahend

- Incorrect output D $= 2^n + X - Y$
- Correct output D' =-(Y-X) $= -(2^n - D)$ $=-(\overline{D}+1)$ (2's compliment)

Borrows MinuendXSubtrahend Y = 10011Difference D Corrected D'

This is incorrect

2s compliment

- Given binary unsigned integer of n bits D, its 2s compliment $2^n D = \overline{D} + 1$
- Proof
 - Biggest number represented in *n* bit: $(11...1)_2 = 2^n 1$
 - $2^n D = [(11...1)_2 + 1] D = (11...1)_2 D + 1 = \overline{D} + 1$
- Implementation
 - Inversion and plus 1, easily doable as complementer

- 1. Compute 20-15=5 using 6-bit binary
 - $20 = (010100)_2$, $15 = (001111)_2$
- 2. Compute 15-20=-5 using 6-bit binary and 2s complement

- 1. Compute 20-15=5 using 6-bit binary
 - $20 = (010100)_2$, $15 = (001111)_2$
- 2. Compute 15-20=-5 using 6-bit binary and 2s complement
 - Correction: $(111011)_2$ 2s complement: $(000101)_2$

 $\begin{array}{c} {}_{\text{Borrows}} & 1100000 \\ & 001111 \\ {}_{\text{ement}} & -010100 \\ \hline & 111011 \\ & 000101 \end{array}$

- 1. Compute 20-15=5 using 6-bit binary
 - $20 = (010100)_2$, $15 = (001111)_2$
- 2. Compute 15-20=-5 using 6-bit binary and 2s complement

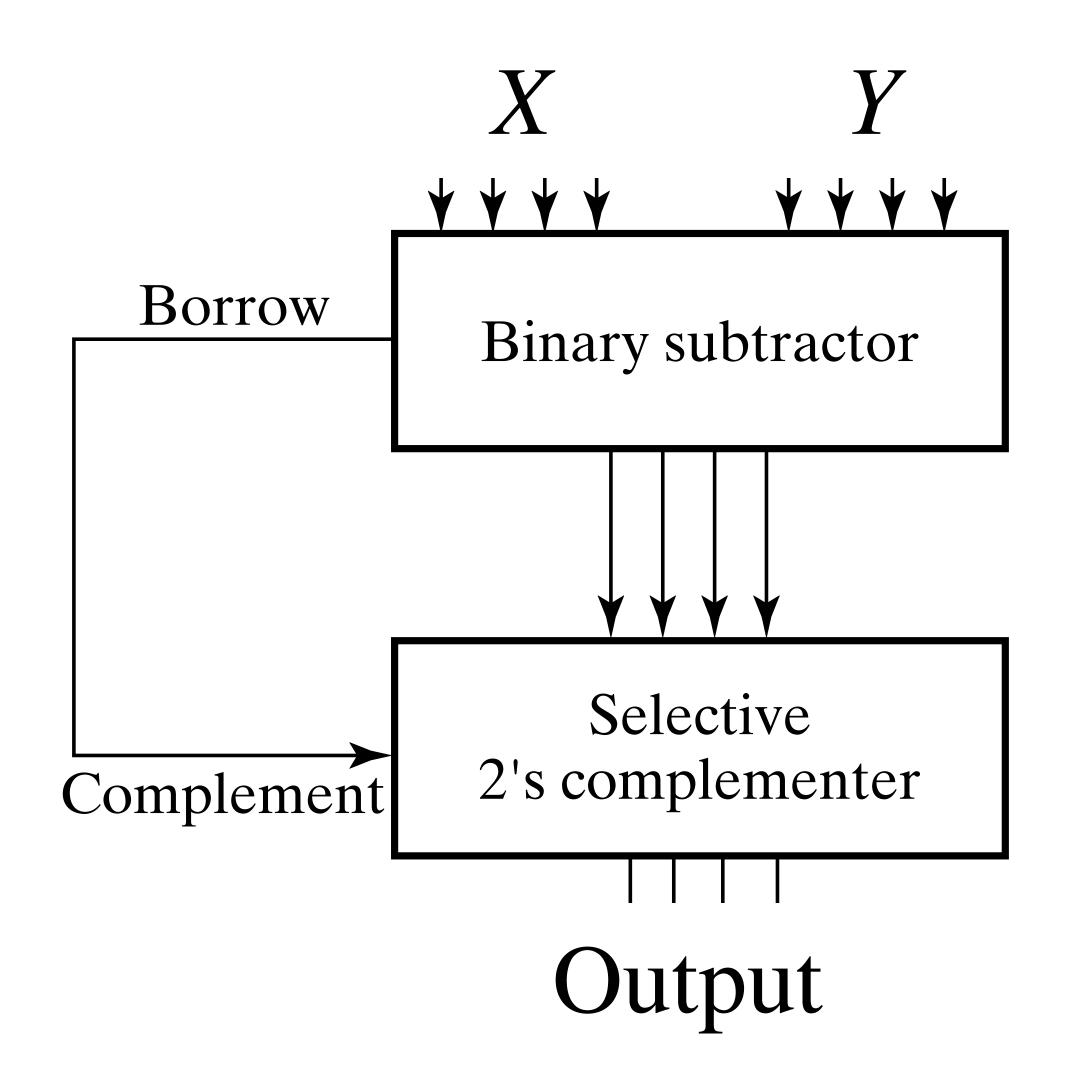
Suddy.

1. Compute 7-15=-8 using 6-bit binary and 2s complement

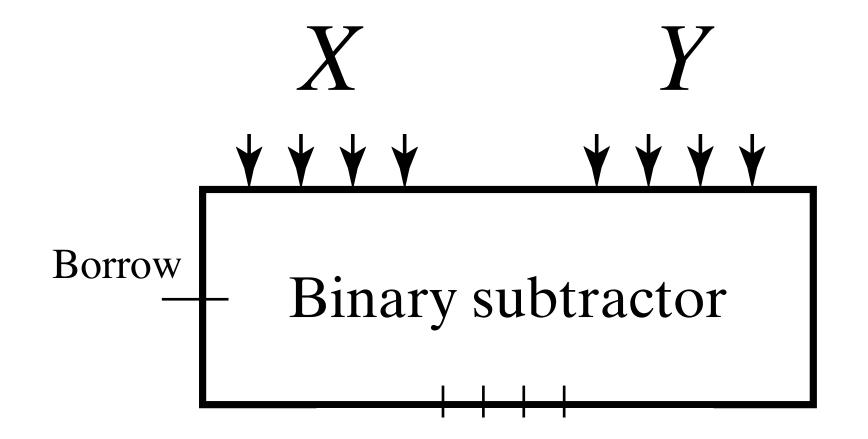
Full Unsigned Subtraction

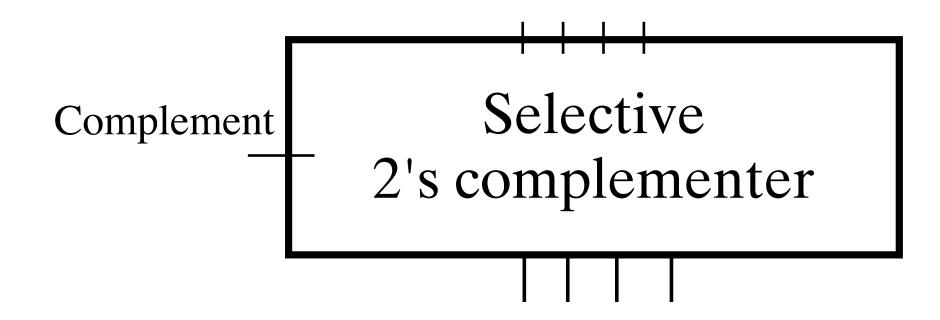
- Solution 1
 - Compare the Minuend and Subtrahend, switch places if the Subtrahend is greater, then add negative sign
- Solution 2
 - Use 2s compliment

Full Unsigned Subtraction

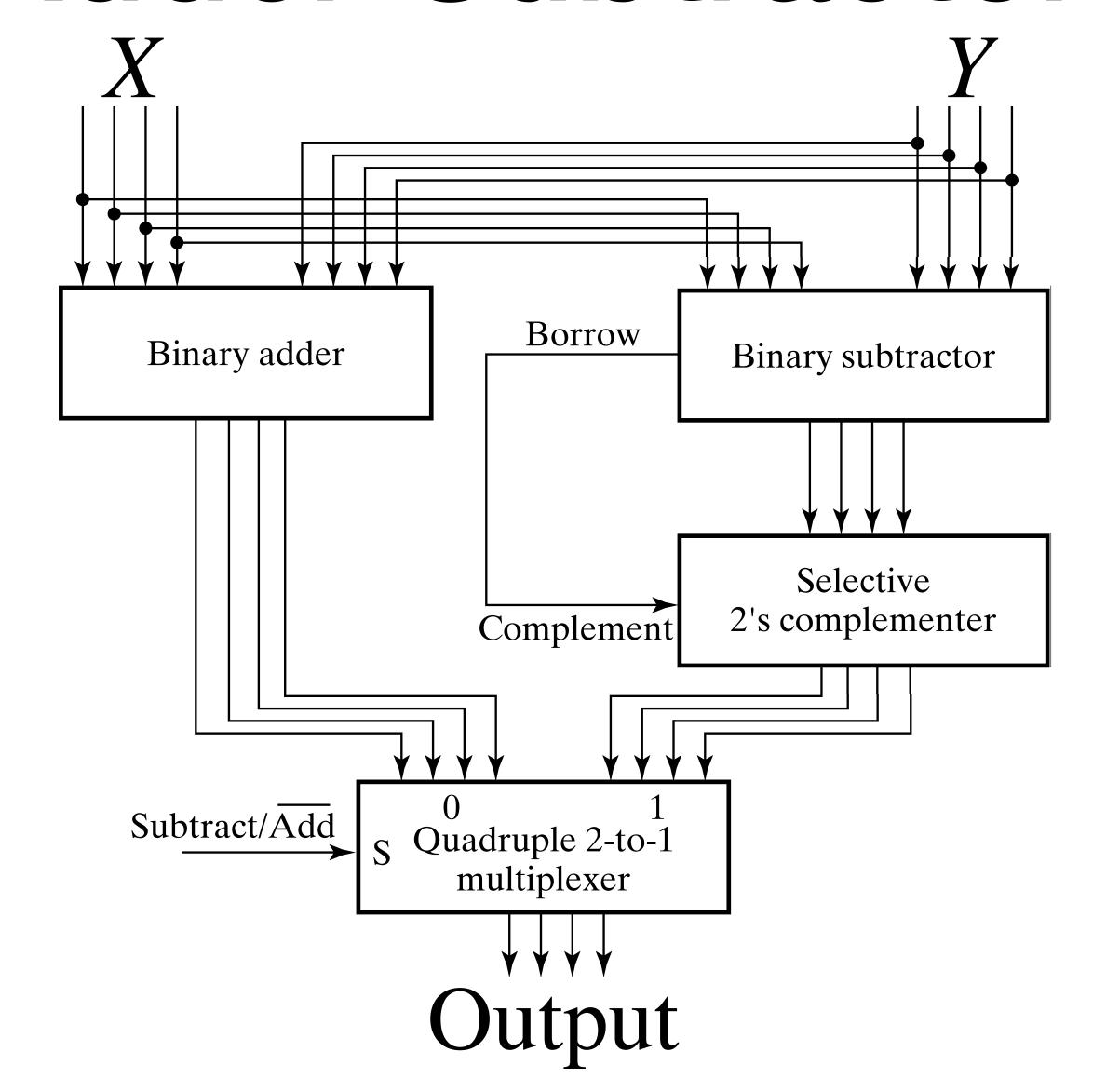


F1 Full Unsigned Subtraction





Adder-Subtractor



Unsigned Binary Subtraction III

What do you mean we can do subtraction using an adder?

2s compliment

$$2^n - D = \overline{D} + 1$$

Subtraction using 2s Complement

- Input: X and Y
 - Y: 2s complement $Y' = \overline{Y} + 1$ ($\overline{Y} + 1 = 2^n Y$)
 - $X Y = X + (2^n Y) 2^n = X + Y' 2^n$
 - Since $2^n = (10...0)_2$, and we only output n-bits, it can be discarded

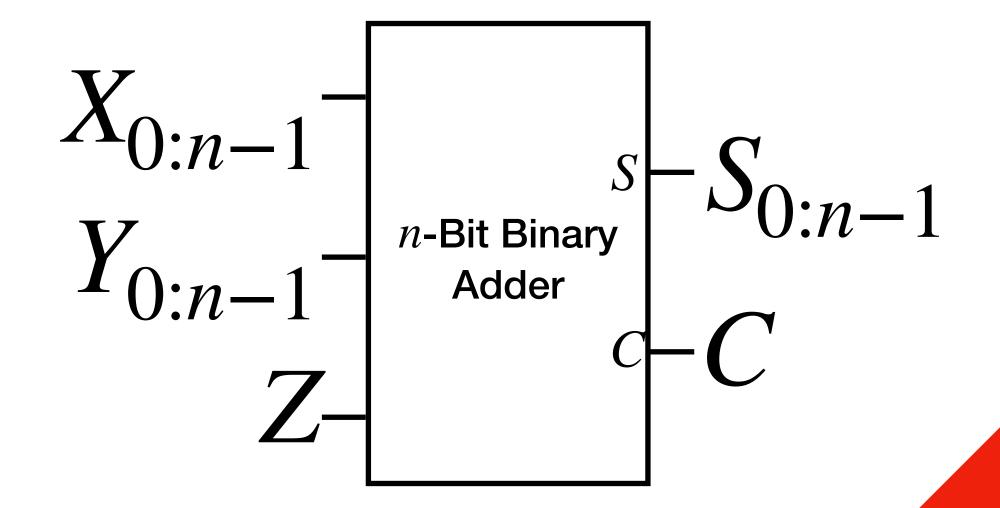
Subtraction using 2s Complement

• 84 - 67 (10bit)

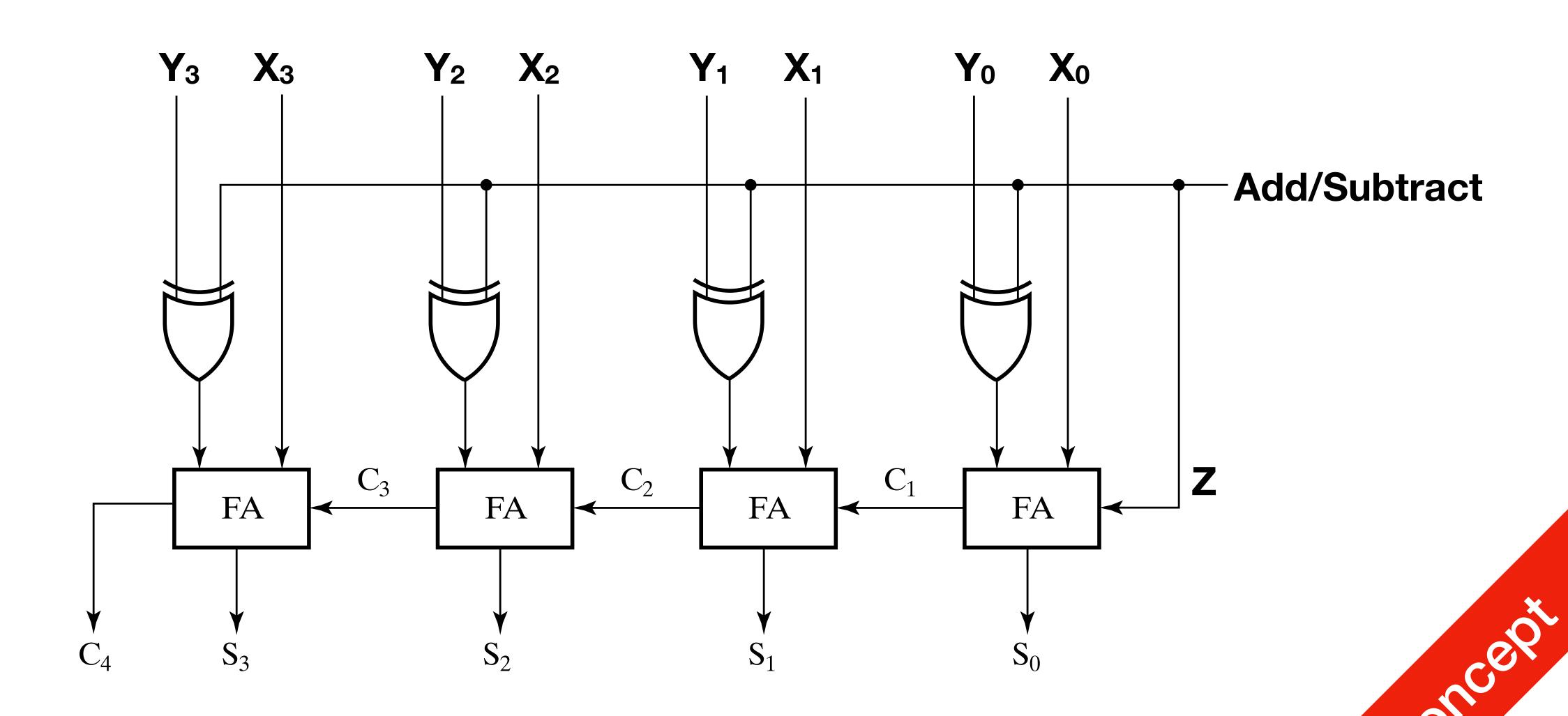
```
X = 0001010100 Y = 0001000011 Y' = 11101111101 X + Y' = 10000010001 discard carry X + Y' - 2^{10} = 0000010001 correct! (84 - 67)_{10} = 17_{10} = 10001 = 0000010001
```

Adder-Subtractor Unit

- 1. Adder
- 2. Complementer (Inverting and add 1)
 - Or just inverting, and then plus one
- Addition: X + Y
- Subtraction: $X Y = X + \overline{Y} + 1 2^n$
 - We are using n-bit adder, 2^n can be disregarded
 - ullet The plus 1 here can be Z input to the adder



Adder-Subtractor Unit



P0-2 Adder-Subtractor

Adder Subtractor Units (Unsigned)

- Binary Adder
- Binary Subtractor
- Binary Adder-Subtractor Unit, using Adder, Subtractor, Complementer and Multiplexer
- Binary Adder-Subtractor Unit using Adder and XOR

Selie, I

Excercises

2s Complement Subtraction using 2s Complement

• Compute 10-7 using 4-bit binary using Adder and 2s complement

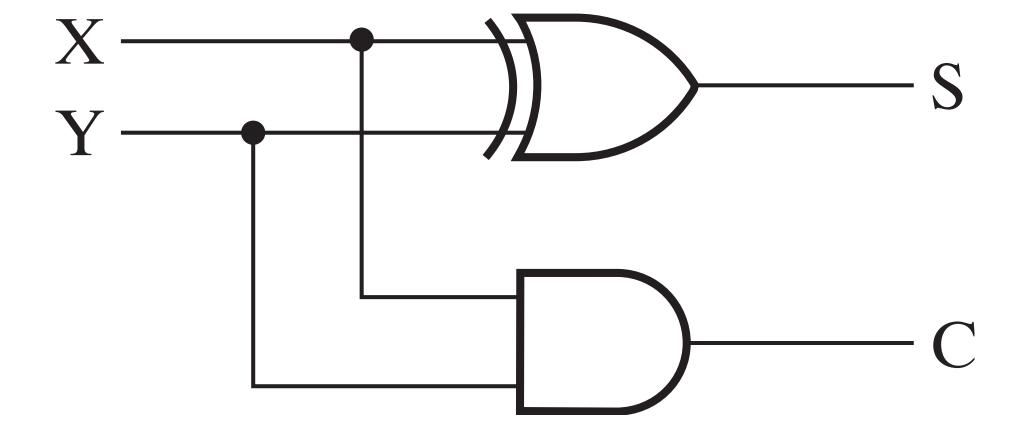
• Compute 24-17 using 8-bit binary using Adder and 2s complement

Hardware Description Language

VHDL (VHSIC-HDL): Very High Speed Integrated Circuit Hardware Description Language

Previous: 1-bit Half Adder

- Create a new component in VHDL called HalfAdder1
 - Input: X, Y
 - Output: S, C
 - Don't use AFTER



Previous: 1-bit Half Adder

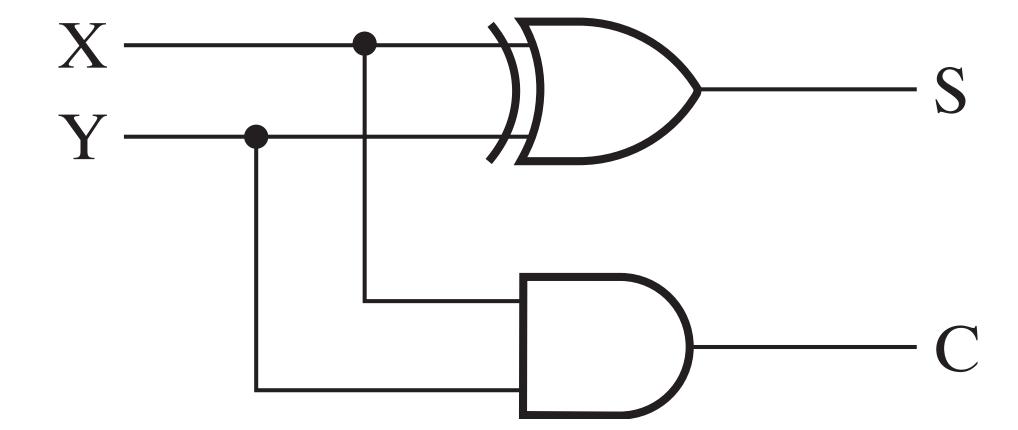
architecture arch1 of HalfAdder is

begin

$$S \le X XOR Y$$
;

$$C \ll X AND Y$$
;

end arch1;



Today's Tasks

- 1-bit Half Adder
- 1-bit Full Adder using Schema Diagram (Logic Circuit Diagram)
- 4-bit Full Adder using Schema Diagram (Logic Circuit Diagram)
- 4-bit Adder-Subtractor using Schema Diagram (Logic Circuit Diagram)