
15.06.20 14:10CSCI 150
Introduction to Digital and Computer

System Design
Lecture 3: Combinational Logic Design IV

Jetic Gū

2020 Summer Semester (S2)

Overview
• Focus: Logic Functions

• Architecture: Combinatory Logical Circuits

• Textbook v4: Ch3 3.6, 3.7; v5: Ch3 3.6, 3.7

• Core Ideas:

1. Encoder

2. Multiplexer

Systematic Design Procedures
1. Specification: Write a specification for the circuit

2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions

3. Optimisation: Apply optimisation, minimise the number of logic gates and
literals required

4. Technology Mapping: Transform design to new diagram using available
implementation technology

5. Verification: Verify the correctness of the final design in meeting the
specifications

Rev
iew

P0
Review

Functional Components

• Value-Fixing, Transferring, Inverting, Enabler

• Decoder

• Input:

• Output: ,

A0A1 . . . An−1

D0D1 . . . D2n−1 Di = mi

Rev
iew

P0
Review

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Encoder

Sum
mary

P1
Encoder

Wait, didn’t we just covered this?

Oh, that’s decoder

Encoder

• Inverse operation of a decoder

• inputs, only one is giving positive
input1

• outputs

2n

n

Conc
ep

t

P1
Encoder

1. In reality, could be less

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

Encoder

• Inverse operation of a decoder

• inputs, only one is giving positive
input1

• outputs

2n

n

Conc
ep

t

P1
Encoder

1. In reality, could be less

A0

A1

A2

A0

A1

A2

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

EncoderP1
Encoder

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Conc
ep

t

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Encoder

• What happens if the inputs are all 0s?

• What happens if the inputs include multiple 1s?

P1
Encoder

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Conc
ep

t

Priority Encoder

• Additional Validity Output

• Indicating whether the input is valid (contains 1)

• Priority

• Ignores if

V

D<i Di = 1

P1
Encoder

Conc
ep

t

Priority
Encoder

0

1

2

3

0

1

V

Priority EncoderP1
Encoder

Priority
Encoder

0

1

2

3

0

1

V

Conc
ep

t

D3 D2 D1 D0 A1 A0 V

0 0 0 0 X X 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

0

X

X

X

X

XX

Priority EncoderP1
Encoder

Priority
Encoder

0

1

2

3

0

1

V

Conc
ep

t

D3 D2 D1 D0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

V = D3 + D2 + D1 + D0

A1 = D3 + D3D2 = D2 + D3

A0 = D3D2D1 + D3

= D2D1 + D3

Multiplexer

Sum
mary

P2
Multiplexer

Switch Modes

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P2
Multiplexer

n

n

…

n

n

Single-Bit 2-to-1 Multiplexer

• 2 single-bit inputs

• 1 single-bit output

• 1-bit switch

Conc
ep

t

P2
Multiplexer

0
1

I0

I1

S

Y

Single-Bit 2-to-1 Multiplexer

Conc
ep

t

P2
Multiplexer

0
1

I0

I1

S

Y

S I0 I1 Y

0 0 X 0

0 1 X 1

1 X 0 0

1 X 1 1

Single-Bit 2-to-1
Multiplexer

Conc
ep

t

P2
Multiplexer

0
1

I0

I1

S

Y

3-7 / Selecting 141

This same equation can be obtained by using a 3-variable K-map. As shown in
Figure 3-24(a), the implementation of the preceding equation can be decomposed
into a 1–to–2-line decoder, two enabling circuits, and a 2-input OR gate. A common
symbol for a 2-to-1 multiplexer is shown in Figure 3-24(b), with a trapezoid signify-
ing the selection of the output on the short parallel side from among the 2n informa-
tion inputs on the long parallel side.

Suppose that we wish to design a 4–to–1-line multiplexer. In this case, the
function Y depends on four inputs I0, I1, I2, and I3 and two select inputs S1 and S0.
By placing the values of I0 through I3 in the Y column, we can form Table 3-8, a
condensed truth table for this multiplexer. In this table, the information variables
do not appear as input columns of the table but appear in the output column.
Each row represents multiple rows of the full truth table. In Table 3-8, the row 00
I0 represents all rows in which (S1, S0) = 00. For I0 = 1 it gives Y = 1, and for
I0 = 0 it gives Y = 0. Since there are six variables, and only S1 and S0 are !xed,
this single row represents 16 rows of the corresponding full truth table. From the
table, we can write the equation for Y as

Y = S1S0 I0 + S1S0 I1 + S1S0 I2 + S1S0 I3

If this equation is implemented directly, two inverters, four 3-input AND gates,
and a 4-input OR gate are required, giving a gate-input cost of 18. A different imple-
mentation can be obtained by factoring the AND terms to give

Y = (S1S0)I0 + (S1S0)I1 + (S1S0)I2 + (S1S0)I3

 FIGURE 3-24
(a) Single-Bit 2–to–1-Line Multiplexer; (b) common Symbol for a Multiplexer

 TABLE 3-8
Condensed Truth Table for 4-to-1-Line
Multiplexer

S1 S0 Y

0 0 I 0
0 1 I 1
1 0 I 2
1 1 I 3

Y

Y

S

S

Decoder
Enabling
Circuits I0 0

1I1

I0

I1

(b)(a)

M03_MANO0637_05_SE_C03.indd 141 23/01/15 1:51 PM

Technology

• 1 x 1-to-2 Decoder

• 2 x 1-bit Enabler

• 1 x 2-input OR Gate

Single-Bit 4-to-1
Multiplexer

Conc
ep

t

P2
Multiplexer

0

3

1
2

2

I0

I3

S(1:0)

Y
I1
I2

Technology

• 1 x 2-to-4 Decoder

• 4 x 1-bit Enabler

• 1 x 4-input OR Gate

Y
S

Decoder
Enabling
Circuits

I0

I1

Single-Bit 4-to-1
Multiplexer

Conc
ep

t

P2
Multiplexer

0

3

1
2

2

I0

I3

S(1:0)

Y
I1
I2

Technology

• 1 x 2-to-4 Decoder

• 4 x 1-bit Enabler

• 1 x 4-input OR Gate

142 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

This implementation can be constructed by combining a 2–to–4-line
decoder, four AND gates used as enabling circuits, and a 4-input OR gate, as
shown in Figure 3-25. We will refer to the combination of AND gates and OR
gates as an m * 2 AND-OR, where m is the number of AND gates and 2 is the
number of inputs to the AND gates. This resulting circuit has a gate input cost of
22, which is more costly. Nevertheless, it provides a structural basis for construct-
ing larger n–to–2n-line multiplexers by expansion.

A multiplexer is also called a data selector, since it selects one of many infor-
mation inputs and steers the binary information to the output line. The term “multi-
plexer” is often abbreviated as “MUX.”

Multiplexers can be expanded by considering vectors of input bits for larger
values of n. Expansion is based upon the circuit structure given in Figure 3-24(a),
consisting of a decoder, enabling circuits, and an OR gate. Multiplexer design is illus-
trated in Examples 3-10 and 3-11.

EXAMPLE 3-10 64–to–1-Line Multiplexer

A multiplexer is to be designed for n = 6. This will require a 6–to–64-line decoder as
given in Figure 3-15, and a 64 * 2 AND-OR gate. The resulting structure is shown in
Figure 3-26. This structure has a gate-input cost of 182 + 128 + 64 = 374.

In contrast, if the decoder and the enabling circuit were replaced by invert-
ers plus 7-input AND gates, the gate-input cost would be 6 + 448 + 64 = 518. For
single-bit multiplexers such as this one, combining the AND gate generating Di
with the AND gate driven by Di into a single 3-input AND gate for every i = 0
through 63 reduces the gate-input cost to 310. For multiple-bit multiplexers, this

S1
Decoder

S0

I0

I1
Y

I2

I3

 FIGURE 3-25
A Single-Bit 4–to–1-Line Multiplexer

M03_MANO0637_05_SE_C03.indd 142 23/01/15 1:51 PM

Circuit Drawing Time!

Sum
mary

P3
LogicWorks

It’s OK, this is the last time…

Sorta…

Last Circuit Drawing Practice

1. Sub-circuit

2. Implementing 2-to-4 Decoder using drawing tools

3. Implementing 3-to-8 Decoder using 2-to-4 Decoders

4. Implementing Octal-to-Binary Priority Encoder using drawing tools1

5. Implementing Multiplexer using drawing tools1

Conc
ep

t

P3
LogicWorks

1. You will be reusing these designs in later lectures and assignments

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

1. Implement an enabler, then select the Pseudo Devices library

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

2. Replace the switch with Port In, replace the probs with Port Out

…

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

2. Replace the switch with Port In, replace the probs with Port Out

…

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

3. File-New-Device Symbol

Sub-circuit

1. Sub-circuit

2. Implementing 2-to-4 Decoder using drawing tools

3. Implementing 3-to-8 Decoder 2-to-4 Decoders

4. Implementing Octal-to-Binary Priority Encoder using drawing tools1

5. Implementing Multiplexer using drawing tools1

Te
ch

nic
al

P3
LogicWorks

4. With the Circuit.cct open and Part1 open, go to Options — Subcircuit and Part Type

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

5. Select Create a subcircuit symbol and select an open circuit to attach to it

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

6. Select Circuit.cct

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

7. Draw a rectangle and add the THIN pins

Use these pins only!

Add a text description

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

8. Save the part in a new library, e.g. CSCI150

Sub-circuit

Te
ch

nic
al

P3
LogicWorks

9. Now you are a much happier person

Last Circuit Drawing Practice

1. Sub-circuit

2. Implementing 2-to-4 Decoder using drawing tools

3. Implementing 3-to-8 Decoder using 2-to-4 Decoders

4. Implementing Octal-to-Binary Priority Encoder using drawing tools1

5. Implementing Multiplexer using drawing tools1

Conc
ep

t

P3
LogicWorks

1. You will be reusing these designs in later lectures and assignments

