
15.06.20 14:10CSCI 150 
Introduction to Digital and Computer 

System Design 
Lecture 3: Combinational Logic Design IV

Jetic Gū

2020 Summer Semester (S2)



Overview
• Focus: Logic Functions


• Architecture: Combinatory Logical Circuits


• Textbook v4: Ch3 3.6, 3.7; v5: Ch3 3.6, 3.7


• Core Ideas:


1. Encoder


2. Multiplexer



Systematic Design Procedures
1. Specification: Write a specification for the circuit


2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions


3. Optimisation: Apply optimisation, minimise the number of logic gates and 
literals required


4. Technology Mapping: Transform design to new diagram using available 
implementation technology


5. Verification: Verify the correctness of the final design in meeting the 
specifications
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Functional Components

• Value-Fixing, Transferring, Inverting, Enabler


• Decoder


• Input: 


• Output: , 

A0A1 . . . An−1

D0D1 . . . D2n−1 Di = mi
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Encoder
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Wait, didn’t we just covered this?

Oh, that’s decoder



Encoder

• Inverse operation of a decoder


•  inputs, only one is giving positive 
input1


•  outputs
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Encoder

• Inverse operation of a decoder


•  inputs, only one is giving positive 
input1
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Encoder

• What happens if the inputs are all 0s?


• What happens if the inputs include multiple 1s?
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Priority Encoder

• Additional Validity Output 


• Indicating whether the input is valid (contains 1)


• Priority


• Ignores  if 

V

D<i Di = 1
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V = D3 + D2 + D1 + D0

A1 = D3 + D3D2 = D2 + D3

A0 = D3D2D1 + D3

= D2D1 + D3



Multiplexer
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Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output
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Single-Bit 2-to-1 Multiplexer

• 2 single-bit inputs


• 1 single-bit output


• 1-bit switch
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Single-Bit 2-to-1 Multiplexer
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This same equation can be obtained by using a 3-variable K-map. As shown in 
Figure 3-24(a), the implementation of the preceding equation can be decomposed 
into a 1–to–2-line decoder, two enabling circuits, and a 2-input OR gate. A common 
symbol for a 2-to-1 multiplexer is shown in Figure 3-24(b), with a trapezoid signify-
ing the selection of the output on the short parallel side from among the 2n informa-
tion inputs on the long parallel side.

Suppose that we wish to design a 4–to–1-line multiplexer. In this case, the 
function Y depends on four inputs I0, I1, I2, and I3 and two select inputs S1 and S0. 
By placing the values of I0 through I3 in the Y column, we can form Table 3-8, a 
condensed truth table for this multiplexer. In this table, the information variables 
do not appear as input columns of the table but appear in the output column. 
Each row represents multiple rows of the full truth table. In Table 3-8, the row 00 
I0 represents all rows in which (S1, S0) = 00. For I0 = 1 it gives Y = 1, and for 
I0 = 0 it gives Y = 0. Since there are six variables, and only S1 and S0 are !xed, 
this single row represents 16 rows of the corresponding full truth table. From the 
table, we can write the equation for Y as

Y = S1S0 I0 + S1S0 I1 + S1S0 I2 + S1S0 I3

If this equation is implemented directly, two inverters, four 3-input AND gates, 
and a 4-input OR gate are required, giving a gate-input cost of 18. A different imple-
mentation can be obtained by factoring the AND terms to give

Y = (S1S0)I0 + (S1S0)I1 + (S1S0)I2 + (S1S0)I3

 FIGURE 3-24
(a) Single-Bit 2–to–1-Line Multiplexer; (b) common Symbol for a Multiplexer

 TABLE 3-8
Condensed Truth Table for 4-to-1-Line  
Multiplexer

S1 S0 Y

0 0 I 0
0 1 I 1
1 0 I 2
1 1 I 3

Y
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Technology

• 1 x 1-to-2 Decoder

• 2 x 1-bit Enabler

• 1 x 2-input OR Gate
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This implementation can be constructed by combining a 2–to–4-line 
decoder, four AND gates used as enabling circuits, and a 4-input OR gate, as 
shown in Figure 3-25. We will refer to the combination of AND gates and OR 
gates as an m * 2 AND-OR, where m is the number of AND gates and 2 is the 
number of inputs to the AND gates. This resulting circuit has a gate input cost of 
22, which is more costly. Nevertheless, it provides a structural basis for construct-
ing larger n–to–2n-line multiplexers by expansion.

A multiplexer is also called a data selector, since it selects one of many infor-
mation inputs and steers the binary information to the output line. The term “multi-
plexer” is often abbreviated as “MUX.”

Multiplexers can be expanded by considering vectors of input bits for larger 
values of n. Expansion is based upon the circuit structure given in Figure 3-24(a), 
consisting of a decoder, enabling circuits, and an OR gate. Multiplexer design is illus-
trated in Examples 3-10 and 3-11.

EXAMPLE 3-10 64–to–1-Line Multiplexer

A multiplexer is to be designed for n = 6. This will require a 6–to–64-line decoder as 
given in Figure 3-15, and a 64 * 2 AND-OR gate. The resulting structure is shown in 
Figure 3-26. This structure has a gate-input cost of 182 + 128 + 64 = 374.

In contrast, if the decoder and the enabling circuit were replaced by invert-
ers plus 7-input AND gates, the gate-input cost would be 6 + 448 + 64 = 518. For 
single-bit multiplexers such as this one, combining the AND gate generating Di 
with the AND gate driven by Di into a single 3-input AND gate for every i = 0 
through 63 reduces the gate-input cost to 310. For multiple-bit multiplexers, this 
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 FIGURE 3-25
A Single-Bit 4–to–1-Line Multiplexer
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Circuit Drawing Time!
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Last Circuit Drawing Practice

1. Sub-circuit


2. Implementing 2-to-4 Decoder using drawing tools


3. Implementing 3-to-8 Decoder using 2-to-4 Decoders


4. Implementing Octal-to-Binary Priority Encoder using drawing tools1


5. Implementing Multiplexer using drawing tools1

Conc
ep

t

P3 
LogicWorks

1. You will be reusing these designs in later lectures and assignments
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1. Implement an enabler, then select the Pseudo Devices library
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2. Replace the switch with Port In, replace the probs with Port Out

…
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3. File-New-Device Symbol



Sub-circuit

1. Sub-circuit


2. Implementing 2-to-4 Decoder using drawing tools


3. Implementing 3-to-8 Decoder 2-to-4 Decoders


4. Implementing Octal-to-Binary Priority Encoder using drawing tools1


5. Implementing Multiplexer using drawing tools1
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4. With the Circuit.cct open and Part1 open, go to Options — Subcircuit and Part Type



Sub-circuit
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5. Select Create a subcircuit symbol and select an open circuit to attach to it



Sub-circuit
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6. Select Circuit.cct



Sub-circuit
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7. Draw a rectangle and add the THIN pins

Use these pins only!

Add a text description
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8. Save the part in a new library, e.g. CSCI150
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9. Now you are a much happier person



Last Circuit Drawing Practice

1. Sub-circuit


2. Implementing 2-to-4 Decoder using drawing tools


3. Implementing 3-to-8 Decoder using 2-to-4 Decoders


4. Implementing Octal-to-Binary Priority Encoder using drawing tools1


5. Implementing Multiplexer using drawing tools1
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1. You will be reusing these designs in later lectures and assignments


