
26.06.20 08:32CSCI 125
Introduction to Computer Science and

Programming II
Lecture 5: Char Array and String 2

Jetic Gū

2020 Summer Semester (S2)

Overview

• Focus: Basic C/C++ Syntax

• Architecture: Linux/Unix OS

• Core Ideas:

1. Stream I/O Operations, File I/O stream

2. Linux/Unix-Specific Terminal Control Sequence

Stream I/O Operations

Sum
mary

P1
Stream I/O

Including File I/O

I/O Streams

• Computer: continuously processes information at a sample rate

• Monitor: refresh rate 60Hz - 120Hz; HDMI TV 30Hz - 60Hz (1Hz = 1 cycle per second)

• Keyboard: 100 bytes per second, i.e. press key for a second, the computer sees 100 keys

• >200 samples of 'i' -> single click 
After 200, every 50 samples equal a single click

Conc
ep

t

P1
Stream I/O

'c'

Press 'C'User action Press 'H' Press 'E' Press 'E' Press
'S' Press 'E'

Computer 
Receives

Time

'c' 'c' - - 'h' 'h' - 'e' 'e' - 'e' 'e' - 's' - 'e' 'e' 'e' -

I/O Streams

• I/O Stream: sequence of characters from source to destination

• Input stream: from an input device to the computer

• Output stream: from the computer to an output device

Conc
ep

t

P1
Stream I/O

'c'

Press 'C'User action Press 'H' Press 'E' Press 'E' Press
'S' Press 'E'

Computer 
Receives

Time

'c' 'c' - - 'h' 'h' - 'e' 'e' - 'e' 'e' - 's' - 'e' 'e' 'e' -

I/O Streams
• iostream contains definitions of two data types for standard I/O

• istream - input stream

• ostream - output stream

• Has two variables declared directly in iostream:

• istream cin - stands for common input (stdin, keyboard)

• ostream cout - stands for common output (stdout, onscreen)

• Operators: e.g. >>, << (these are functions/methods!)

Conc
ep

t

P1
Stream I/O

cin and the get Function
• The get function

• Inputs next character (including whitespace)

• Stores in memory location indicated by its argument

• Syntax

 char varChar;

 cin.get(varChar);

• varChar is a char variable

• varChar is the argument (parameter) of the function

Conc
ep

t

P1
Stream I/O

cin and the ignore Function

• ignore: discards a portion of the input

• Syntax

 char stopChar; int m;

 cin.ignore(m, stopChar);

• Ignore the next m characters or all characters until the character specified by
stopChar

Conc
ep

t

P1
Stream I/O

File Input/Output
• Files are also treated as streams in C++

1. Include fstream header 
stands for file stream

2. Declare file stream variables 
ifstream class for Input stream, ofstream class for Output stream

3. Open input/output sources using the variables 
e.g. actual files

4. Use >>, <<, or other I/O functions 
Exactly the same as cin and cout

5. Close the files

Conc
ep

t

P1
Stream I/O

File Input
• #1: Include the header

• #3: all fstream stuff are under
namespace std

• #6 declaring and initialising 
this also opens the file for reading

• #7 read from the file

• #9 closes the file

Conc
ep

t

P1
Stream I/O

1. Demo1

1. #include <fstream>

2. #include <iostream>

3. using namespace std;

4. int main() {

5. int n;

6. ifstream infile("1.txt");

7. infile >> n;

8. cout << n;

9. infile.close();

10. return 0;

11.}

File Input
• Important Things!

• Some compilers require the filename to be C string (Char Array) 
string fileName = "1.txt";  
ifstream infile(fileName.c_str());

• Always check if the file was opened correctly

 ifstream infile("1.txt");

 if (infile.is_open()) infile >> n;

• Always close the file after using

 infile.close()

Conc
ep

t

P1
Stream I/O

File Input
• Useful things

• EOF: check if the file has reached the end (no more things to read) 
if (infile.eof())
 cout << "File has reached its end!" << endl;

• Read an entire line 
if (myfile.is_open()) {
 while (getline(myfile, line)) { // line is string
 cout << line << '\n';
 }
 myfile.close();
}

Conc
ep

t

P1
Stream I/O

File Output

• #1/3: same header and namespace

• #6 declaring and initialising 
this also opens the file for reading

• #8 write to the file

• #9 closes the file

Conc
ep

t

P1
Stream I/O

1. Demo2

1. #include <fstream>

2. #include <iostream>

3. using namespace std;

4. int main() {

5. int n;

6. ofstream outfile("2.txt");

7. cin >> n;

8. outfile << n << endl;

9. outfile.close();

10. return 0;

11.}

File Output
• Important Things!

• Some compilers require the filename to be C string (Char Array) 
string fileName = "1.txt";  
ofstream outfile(fileName.c_str());

• Always check if the file was opened correctly

 ofstream outfile("1.txt");

 if (outfile.is_open()) outfile << n;

• Always close the file after using

 outfile.close()

Conc
ep

t

P1
Stream I/O

ANSI
escape sequences

Sum
mary

P2
ANSI

How to make your output look COOL

Introduction to ANSI

• Standard for controlling signals for setting 
cursor location, 
colour, 
and other options 
on text terminals and terminal emulators

• If you want your game to look cool on the terminal, you need to know this!

• This only works on supported terminals! (including default ubuntu/macOS
terminals, and iterm2)

Conc
ep

t

P2
ANSI

ANSI Escape Sequence
• Control signals start with two special characters '\033', which is also the

code for `Escape key`

• There’s multiple modes for subsequent things to do

• For this lecture, we focus on colour and rewriting previous lines

• Control Sequence Introducer: '['

• Changing subsequent colour

• Changing the line you are printing

Conc
ep

t

P2
ANSI

Changing Colour

• Print the following string on screen "\033[NNm"
NN stands for the colour code

• This changes the colour for all subsequent prints

• Available options: text colour (foreground), background colour

• Also: Bold, Underline, etc.

• Here we teach you only the most basic 3/4bit colour

Conc
ep

t

P2
ANSI

Changing Colour

• Colour changes for ALL subsequent
print, even after your programme
exits.

• The control sequence itself doesn’t
get printed, only the normal text.
This is because the terminal is
interpreting the RAW text before
displaying

Conc
ep

t

P1
Stream I/O

1. Demo3

1. #include <iostream>

2. using namespace std;

3. int main() {

4. cout << "Normal colour\n";

5. cout << "\033[31mCode31\n";

6. cout << "Same colour\n";

7. cout << "Then, \033[32mCode32\n";

8. cout << "\033[35mCode35\n";

9. cout << "\033[1mBold\n";

10. cout << "\033[0mBack to norm\n";

11. return 0;

12.}

3/4 bit Colour CodeP2
ANSI

Colour Foreground Background
Black 30 40
Red 31 41

Green 32 42
Yellow 33 43
Blue 34 44

Magenta 35 45
Cyan 36 46
White 37 47

Bright Black 90 100
Bright Red 91 101

Bright Green 92 102
Bright Yellow 93 103
Bright Blue 94 104

Bright Magenta 95 105
Bright Cyan 96 106
Bright White 97 107

Additional Code Note

reset 0 everything back to normal

bold/bright 1 often a brighter shade of the same
colour

underline 4

inverse 7 swap foreground and background
colours

bold/bright off 21 turn off bold/bright

underline off 24 turn off underline

inverse off 27 turn off inverse

Te
ch

nic
al

Overwrite previous lines

• After printing the initial map, you might want to change it after the character
moves instead of printing the map again.

• Cursor position: where the next input/output character will be printed on
screen

• Move cursor position up: "\033[1A"

• Clean the current line (and move the cursor to the left): "\033[2k"

Conc
ep

t

P2
ANSI

1. Demo4

Read single char and not Print
• Movement: key pressed, programme

do not wait until `enter` to proceed

• Do not print typed key

• Requires terminal to enter raw stty
mode!

 system("stty raw");

 system("stty opost");

• Return to normal

 system("stty cooked");

Conc
ep

t

P2
ANSI

1. Demo5

 #include <iostream>

 using namespace std;

 int main() {

 cout << "Press any key to continue..." << endl;

 // Set terminal to raw mode

 system("stty raw");

 system("stty opost");

 // Wait for single character

 char input = getchar();

 // Echo input:

 cout << "--" << input << "--";

 // Reset terminal to normal "cooked" mode

 system("stty cooked");

 // And we're out of here

 return 0;

 }

