CSCI 150 Introduction to Digital and Computer System Design Lecture 6: Memory I

Jetic Gū 2020 Winter Semester (S1)

Overview

- Focus: Fundamentals of Complex Digital Circuit Design
- Architecture: von Neumann
- Textbook v4: Ch8 8.1, 8.2, 8.3; v5: Ch7 7.1, 7.2, 7.3
- Core Ideas:
 - 1. Memory Definition
 - 2. Read Only Memory
 - 3. Random Access Memory

Memory Definition Wait... do I have to remember that?

- A collection of cells capable of storing binary information
- providing temporary or permanent storage for substantial amounts of binary information
 - **Substantial**: much much much more than registers in a CPU
 - Temporary: e.g. DDR4 memory sticks
 - Permanent: e.g. IO devices (SSD, HDD), ROM

Memory Definition

Computers In Theory

Input/Output devices

1. Von Neumann Architecture

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Input/Output devices

Raw Data

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Computers In Reality

- IO data is passed to the memory before being processed
- IO data is passed from the memory after being processed

Input/Output devices

Proc. Data

2 Types of Memories

 RAM (Random Access Memory) Memory Read Operation: retrieves information from memory Memory Write Operation: accepts new information for storage

P1

Definition

- Volatile: require power for keeping its content
- ROM (Read Only Memory) Memory Read Operation: retrieves information from memory
 - Non-volatile: might not need constant power to keep its content
- Why do we need ROMs?

Remember CD-ROMs?

The Many Types of ROMs

- CD-ROM
- DVD-ROM
- Firmware ROM
- rewritten, and usually are non-volatile

Essentially, devices that stores information that cannot be normally erased/

P2 ROM

- Storage: $2^n \times m$, 2^n words, each *m*-bits (usually m = 8, which makes a word=a byte)
 - 32-bit processor, n = 32, supports 2^{32} bytes in memory ~ 4GB
- Input: address in *n*-bit binary
- Output: *m*-bits of stored information

P2 ROM

P2 ROM

P2 ROM

P2 ROM

P2 ROM

• 8-bit processor Each address is in 8-bit, total of 256 different addresses

P2 ROM

per word?

• What is the maximum supported memory size for a CPU with 8-bit address space, 1 byte

- per word?
 - Ans: $2^8 \times 1 = 256$

• What is the maximum supported memory size for a CPU with 8-bit address space, 1 byte

- per word?
 - Ans: $2^8 \times 1 = 256$
- per word?

• What is the maximum supported memory size for a CPU with 8-bit address space, 1 byte

• What is the maximum supported memory size for a CPU with 16-bit address space, 1 byte

- per word?
 - Ans: $2^8 \times 1 = 256$
- per word?
 - Ans: $2^{16} \times 1 = 65536$

• What is the maximum supported memory size for a CPU with 8-bit address space, 1 byte

• What is the maximum supported memory size for a CPU with 16-bit address space, 1 byte

- per word?
 - Ans: $2^8 \times 1 = 256$
- per word?
 - Ans: $2^{16} \times 1 = 65536$
- per word?

• What is the maximum supported memory size for a CPU with 8-bit address space, 1 byte

• What is the maximum supported memory size for a CPU with 16-bit address space, 1 byte

• What is the maximum supported memory size for a CPU with 16-bit address space, 2 bytes

- per word?
 - Ans: $2^8 \times 1 = 256$
- per word?
 - Ans: $2^{16} \times 1 = 65536$
- per word?
 - Ans: $2^{16} \times 2 = 131072$

• What is the maximum supported memory size for a CPU with 8-bit address space, 1 byte

• What is the maximum supported memory size for a CPU with 16-bit address space, 1 byte

• What is the maximum supported memory size for a CPU with 16-bit address space, 2 bytes

P2 ROM

• 64-bit CPUs have 64-bit memory space, each word 8-bits

- 64-bit CPUs have 64-bit memory space, each word 8-bits
- What is the maximum supported memory size for a 64-bit CPU?

Question

- 64-bit CPUs have 64-bit memory space, each word 8-bits
- What is the maximum supported memory size for a 64-bit CPU?
 - Ans: $2^{64} \times 1 = 18,446,744,073,709,551,616 = 17$ million Terabytes (16 exabytes)

n-bit address input

ROM Abstraction

 $2^n \times m \text{ ROM}$

5-bit address input

 $2^5 \times 8 \text{ ROM}$

→ 8-bit data output

 This ROM has value 10010011 at address 01h;

5-bit address input

→ 8-bit data output

 This ROM has value 10010011 at address 01h; value 10100100 at address 1Ch;

5-bit address input

5-bit address input

→ 8-bit data output

 This ROM has value 10010011 at address 01h; value 10100100 at address 1Ch;

5-bit address input

5-bit address input

→ 8-bit data output

 This ROM has value 10010011 at address 01h; value 10100100 at address 1Ch;

5-bit address input

- This ROM has value 10010011 at address 01h;
 value 10100100 at address 1Ch;
 - In reality, these wiring are done with programmable technology

5-bit address input

- This ROM has value 10010011 at address 01h; value 10100100 at address 1Ch;
- In reality, these wiring are done with programmable technology

 Originally proposed as unhackable storage devices Fixed internal data, cannot be hijacked through software

- Originally proposed as unhackable storage devices Fixed internal data, cannot be hijacked through software
- Usually very fast readings (not as fast as registers but usually much faster than e.g. HDD)

- Originally proposed as unhackable storage devices Fixed internal data, cannot be hijacked through software
- Usually very fast readings (not as fast as registers but usually much faster than e.g. HDD)
- Fun fact: early SSDs were using Flash Memory technology, an Electrically Erasable ROM (like in the previous slide), which is why they were so expensive

Read Access Memory

Now supporting Write in all participating memory sticks

RAM Abstraction

Read/Write

Chip Select CS	Read/Write R/W	Memory Operation
0	×	None
1	0	Write to selected word
1	1	Read from selected word

P3 RAM

m-bit data input

n-bit address input ———

Read/Write _____ CS _____ $2^n \times m$ RAM 2^n words *m* bits per word

 \downarrow *m*-bit data output

 Apply the address of the desired word to the address lines *m*-bit data input

n-bit address input —

Read/Write _____ CS _____ $2^n \times m$ RAM 2^n words *m* bits per word

 \downarrow *m*-bit data output

- Apply the address of the desired word to the address lines
- 2. Apply the data bits that must be stored in memory to the data input lines

m-bit data input

n-bit address input —

Read/Write _____ CS _____ $2^n \times m$ RAM 2^n words *m* bits per word

- 1. Apply the address of the desired word to the address lines
- 2. Apply the data bits that must be stored in memory to the data input lines
- 3. Activate the Write input

m-bit data input

n-bit address input ———

Read/Write _____

 $2^n \times m$ RAM 2^n words *m* bits per word

 \downarrow *m*-bit data output

P3 RAM

Steps for Read

m-bit data input

n-bit address input

Read/Write CS

 $2^n \times m$ RAM 2^n words *m* bits per word

1. Apply the address of the desired word to the address lines

Steps for Read

m-bit data input

n-bit address input

Read/Write CS

 $2^n \times m$ RAM 2^n words *m* bits per word

- 1. Apply the address of the desired word to the address lines
- 2. Activate the Read input

Steps for Read

m-bit data input

n-bit address input

Read/Write CS

 $2^n \times m$ RAM 2^n words *m* bits per word

- 1. Apply the address of the desired word to the address lines
- 2. Activate the Read input

Steps for Read

m-bit data input

n-bit address input

Read/Write CS

 $2^n \times m$ RAM 2^n words *m* bits per word

Summary Today

- devices?
- Read Only Memory
 - And its implementation using OR gate array and decoder
- Random Access Memory
 - What does the interface look like?

• Memory Definition: what are some memory devices? what are not memory

