
16.03.20 07:58CSCI 150
Introduction to Digital and Computer

System Design
Lecture 4: Sequential Circuit V

Jetic Gū

2020 Winter Semester (S1)

Administrative

1. If you missed any Quiz/Midterm due to reasons beyond your control, you
must email me and arrange a separate test remotely or at the college

2. As we move to online lectures, I am against removing the Lab portion so I
suggest that you get your hands on LogicWorks

3. Quiz 4 will be held online

Admin

P0
XXXXXXX

Overview
• Focus: Basic Information Retaining Blocks

• Architecture: Sequential Circuit

• Textbook v4: Ch5 5.5, 5.6; v5: Ch4 4.5

• Core Ideas:

1. Sequential Circuit Design Procedures

2. Other Flip-Flop Types

Latches and Flip-Flops

Rev
iew

P0
Review

Flip-Flops

4-3 / Flip-Flops 207

When the positive edge occurs, the clock input changes to 1. This disables the master
latch so that its value is fixed and enables the slave latch so that it copies the state of
the master latch. The state of the master latch to be copied is the state that is present
at the positive edge of the clock. Thus, the behavior appears to be edge triggered.
With the clock input equal to 1, the master latch is disabled and cannot change, so
the state of both the master and the slave remain unchanged. Finally, when the clock
input changes from 1 to 0, the master is enabled and begins following the D value.
But during the 1- to- 0 transition, the slave is disabled before any change in the master
can reach it. Thus, the value stored in the slave remains unchanged during this
 transition. An alternative implementation that requires fewer gates is given in
 Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and flip- flops are
shown in Figure 4-11. A flip- flop or latch is designated by a rectangular block with

(a) Latches

S

R

SR SR

S

R

D with 0 Control

D

C

D with 1 Control

D

C

(b) Master–slave flip-flops

D

C

Triggered DTriggered SR

S

R

C

D

C

Triggered DTriggered SR

S

R

C

(c) Edge-triggered flip-flops

Triggered D

D

C

Triggered D

D

C

 FIGURE 4-11
Standard Graphics Symbols for Latches and Flip- Flop

M04_MANO0637_05_SE_C04.indd 207 23/01/15 1:54 PM

Latches

4-3 / Flip-Flops 207

When the positive edge occurs, the clock input changes to 1. This disables the master
latch so that its value is fixed and enables the slave latch so that it copies the state of
the master latch. The state of the master latch to be copied is the state that is present
at the positive edge of the clock. Thus, the behavior appears to be edge triggered.
With the clock input equal to 1, the master latch is disabled and cannot change, so
the state of both the master and the slave remain unchanged. Finally, when the clock
input changes from 1 to 0, the master is enabled and begins following the D value.
But during the 1- to- 0 transition, the slave is disabled before any change in the master
can reach it. Thus, the value stored in the slave remains unchanged during this
 transition. An alternative implementation that requires fewer gates is given in
 Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and flip- flops are
shown in Figure 4-11. A flip- flop or latch is designated by a rectangular block with

(a) Latches

S

R

SR SR

S

R

D with 0 Control

D

C

D with 1 Control

D

C

(b) Master–slave flip-flops

D

C

Triggered DTriggered SR

S

R

C

D

C

Triggered DTriggered SR

S

R

C

(c) Edge-triggered flip-flops

Triggered D

D

C

Triggered D

D

C

 FIGURE 4-11
Standard Graphics Symbols for Latches and Flip- Flop

M04_MANO0637_05_SE_C04.indd 207 23/01/15 1:54 PM

4-3 / Flip-Flops 207

When the positive edge occurs, the clock input changes to 1. This disables the master
latch so that its value is fixed and enables the slave latch so that it copies the state of
the master latch. The state of the master latch to be copied is the state that is present
at the positive edge of the clock. Thus, the behavior appears to be edge triggered.
With the clock input equal to 1, the master latch is disabled and cannot change, so
the state of both the master and the slave remain unchanged. Finally, when the clock
input changes from 1 to 0, the master is enabled and begins following the D value.
But during the 1- to- 0 transition, the slave is disabled before any change in the master
can reach it. Thus, the value stored in the slave remains unchanged during this
 transition. An alternative implementation that requires fewer gates is given in
 Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and flip- flops are
shown in Figure 4-11. A flip- flop or latch is designated by a rectangular block with

(a) Latches

S

R

SR SR

S

R

D with 0 Control

D

C

D with 1 Control

D

C

(b) Master–slave flip-flops

D

C

Triggered DTriggered SR

S

R

C

D

C

Triggered DTriggered SR

S

R

C

(c) Edge-triggered flip-flops

Triggered D

D

C

Triggered D

D

C

 FIGURE 4-11
Standard Graphics Symbols for Latches and Flip- Flop

M04_MANO0637_05_SE_C04.indd 207 23/01/15 1:54 PM

Systematic Design Procedures 
Sequential Circuits

1. Specification

2. Formulation 
e.g. using state table or state diagram

3. State Assignment: assign binary codes to states

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state
entries

5. Output Equation Determination: Derive output equations from the output entries

6. Optimisation

7. Technology Mapping

8. Verification

Rev
iew

P0
Review

Systematic Design Procedures
Sequential Circuits

Specification

Formulation

Optimisation

Technology Mapping

Verification

Sequential Circuit
Design II

Sum
mary

P1
Design

State Assignment; Input Equation Determination;
Output Equation Determination

Systematic Design Procedures 
Sequential Circuits

1. Specification

2. Formulation 
e.g. using state table or state diagram

3. State Assignment: assign binary codes to states

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state
entries

5. Output Equation Determination: Derive output equations from the output entries

6. Optimisation

7. Technology Mapping

8. Verification

Rev
iew

P1
Design

Systematic Design Procedures
Sequential Circuits

Specification

Formulation

Optimisation

Technology Mapping

Verification

2. Formulation
• Sometimes it is more intuitive to describe state transitions then defining the

states

Rev
iew

P1
Design

0 1

01/1,10/1

01/1,10/1

00/0,11/0 00/1,11/1

C D

A B E F

2. Formulation

Exa
mple

P1
Design

• Incrementer: perform +1 operation every CLK on 3-bit

2. Formulation

Exa
mple

P1
Design

• Incrementer: perform +1 operation every CLK on 3-bit

000 001 010 011

111 110 101 100

3. State Assignment
• Used when states are quite complicated and expressed using variables during

Formulation

• Define the binary values for each state

Conc
ep

t

P1
Design

SEQUENTIAL CIRCUITS

equal to 1 when the previous three inputs to the circuit were 110 and current input
is a 1. Otherwise, Z equals 0.

The first step in the formulation process is to determine whether the state
diagram or table must be a Mealy model or Moore model circuit. The portion of
the preceding specification that says “... making Z equal to 1 when the previous
three inputs to the circuit are 110 and the current input is a 1” implies that the out-
put is determined from not only the current state, but also the current input. As a
consequence, a Mealy model circuit with the output dependent on both state and
inputs is required.

Recall that a key factor in the formulation of any state diagram is to recog-
nize that states are used to “remember” something about the history of the inputs.
For example, for the sequence 1101 to be able to produce the output value 1 coin-
cident with the final 1 in the sequence, the circuit must be in a state that “remem-
bers” that the previous three inputs were 110. With this concept in mind, we begin
to formulate the state diagram by defining an arbitrary initial state A as the reset
state and the state in which “none of the sequence to be recognized has occurred.”
If a 1 occurs on the input, since 1 is the first bit in the sequence, this event must be
“remembered,” and the state after the clock pulse cannot be A. So a second state,
B, is established to represent the occurrence of the first 1 in the sequence. Further,
to represent the occurrence of the first 1 in the sequence, a transition is placed
from A to B and labeled with a 1. Since this is not the final 1 in the sequence 1101,
its output is a 0. This initial portion of the state diagram is given in Figure 20(a).

(a)

1/0
A B

(b)

1/0 1/0
A CB

(c)

1/0 1/0 0/0 1/1
A C DB

(d)

1/0 1/0 0/0

1/0

1/1

0/0

0/0
0/0

A C DB

FIGURE 20
Construction of a State Diagram for Example 4

���

State Diagram

3. State Assignment
• Used when states are quite complicated and expressed using variables during

Formulation

• Define the binary values for each state

Conc
ep

t

P1
Design

SEQUENTIAL CIRCUITS

interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

State Table

3. State Assignment
• Method 1: sequential assignment 

� , � , � , � , …A = 0 B = 1 C = 2 D = 3

Conc
ep

t

P1
Design

SEQUENTIAL CIRCUITS

interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

State Table

00 00
0001

10 11
11 00

10
10
01

01

3. State Assignment
• Method 2: one hot 

� , � , � , �A = (0001)2 B = (0010)2 C = (0100)2 D = (1000)2

Conc
ep

t

P1
Design

SEQUENTIAL CIRCUITS

interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

State Table

0001 0001
00010010

0100 1000
1000 0001

0100
0100
0010

0010

3. State Assignment

• Are these the only methods?

• No, there’s tons

• Are these methods equivalent?

• No, they each lead to completely different solutions, with different costs

• For this course, we don’t require you to come up with the best state
assignment solution

Thin
k

P1
Design

3. State Assignment

Thin
k

P1
Design

3. State Assignment

• Are we using all of the combinations?

Thin
k

P1
Design

3. State Assignment

• Are we using all of the combinations?

• No. Some states are not designed to be reachable

Thin
k

P1
Design

3. State Assignment

• Are we using all of the combinations?

• No. Some states are not designed to be reachable

• Could also be used in the future for extensions

Thin
k

P1
Design

4. Flip-Flop Input Expressions  
5. Output Expressions

• Express all Flip-Flops using input variables

• Express all outputs using variables and Flip-Flop outputs

P1
Design

SEQUENTIAL CIRCUITS

interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

00
01
10
11

00
00
11
00

10
10
01

01

0
0
0
0

0
0
0
1

Conc
ep

t

4. Flip-Flop Input Expressions  
5. Output Expressions

• Express all Flip-Flops using input variables

• Express all outputs using variables and Flip-Flop outputs

P1
Design

SEQUENTIAL CIRCUITS

interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

00
01
10
11

00
00
11
00

10
10
01

01

� for next state

� for present

D1D0
S1S0

0
0
0
0

0
0
0
1

Conc
ep

t

4. Flip-Flop Input Expressions  
5. Output Expressions

• Express all Flip-Flops using input variables

• Express all outputs using variables and Flip-Flop outputs

P1
Design

SEQUENTIAL CIRCUITS

interested student, state-minimization procedures are found in Reference 1 at the
end of the chapter as well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states
by recognizing potential state equivalence during the design process.

EXAMPLE 4 Finding a State Diagram for a BCD–to–Excess-3 Decoder

Consider a BCD–to–excess-3 decoder where the inputs, rather than being pre-
sented to the circuit simultaneously, are presented serially in successive clock
cycles, least significant bit first. In Table 4(a), the input sequences and correspond-
ing output sequences are listed with the least significant bit first. For example,

TABLE 3
State Table for State Diagram in Figure 20

Present
State

Next State Output Z

X ! 0 X ! 1 X ! 0 X ! 1

A
B
C
D

A
A
D
A

B
C
C
B

0
0
0
0

0
0
0
1

TABLE 4
Sequence Tables for Code-Converter Example

(a) Sequences in Order of
Digits Represented

(b) Sequences in Order of
Common Prefixes

BCD Input Excess-3 Output BCD Input Excess-3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0

0
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
1
1

1
0
1
0
1
0
1
0
1
0

1
0
0
1
1
0
0
1
1
0

0
1
1
1
1
0
0
0
0
1

0
0
0
0
0
1
1
1
1
1

0
0
0
0
0
1
1
1
1
1

0
0
0
1
1
0
0
0
1
1

0
0
1
0
1
0
0
1
0
1

0
1
0
0
0
0
1
0
0
0

1
1
1
1
1
0
0
0
0
0

1
1
1
0
0
0
0
0
1
1

0
0
1
1
0
1
1
0
1
0

0
1
0
0
1
0
1
1
0
1

���

00
01
10
11

00
00
11
00

10
10
01

01

� for next state

� for present

D1D0
S1S0

D1D0

S1S0

0
0
0
0

0
0
0
1

Conc
ep

t

Z

4. Flip-Flop Input Expressions  
5. Output Expressions

• Express all Flip-Flops using input variables

• Express all outputs using variables and Flip-Flop outputs

P1
Design

00
01
10
11

00
00
11
00

10
10
01

01

� for next state

� for present

D1D0
S1S0

D1D0S1S0

0
0
0
0
0
0
0
1

Conc
ep

t

Z

00
01
10
11

X
0
0
0
0
1
1
1
1

D1 = F1(X, S1, S0) = Σm(2,5,6)

D0 = F0(X, S1, S0) = Σm(2,4,7)

Z = m7

6. Optimisation with Unused
States

• Unused states can be implemented as
don’t care conditions

• In this example 
� , � , � , � , � , �  
are unused, and can all be don’t care
conditions

m0 m1 m12 m13 m14 m15

Exa
mple

P1
Design 4-5 / Sequential Circuit Design 231

The three input equations for the D flip- flops are derived from the next- state
values and are simplified in the maps of Figure 4-23. Each map has six don’ t- care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be
drawn here.

It is possible that outside interference or a malfunction will cause the circuit to
enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least

 TABLE 4-7
State Table for Designing with Unused States

Present State Input Next State

A B C X A B C

0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 1 0 0

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

 FIGURE 4-23
Maps for Optimizing Input Equations

M04_MANO0637_05_SE_C04.indd 231 23/01/15 1:54 PM

6. Optimisation with Unused
States

• Unused states can be implemented as
don’t care conditions

• In this example 
� , � , � , � , � , �  
are unused, and can all be don’t care
conditions

m0 m1 m12 m13 m14 m15

Exa
mple

P1
Design 4-5 / Sequential Circuit Design 231

The three input equations for the D flip- flops are derived from the next- state
values and are simplified in the maps of Figure 4-23. Each map has six don’ t- care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be
drawn here.

It is possible that outside interference or a malfunction will cause the circuit to
enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least

 TABLE 4-7
State Table for Designing with Unused States

Present State Input Next State

A B C X A B C

0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 1 0 0

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

 FIGURE 4-23
Maps for Optimizing Input Equations

M04_MANO0637_05_SE_C04.indd 231 23/01/15 1:54 PM

DA = Σm(5,7,8,9,11)

6. Optimisation with Unused
States

• Unused states can be implemented as
don’t care conditions

• In this example 
� , � , � , � , � , �  
are unused, and can all be don’t care
conditions

m0 m1 m12 m13 m14 m15

Exa
mple

P1
Design 4-5 / Sequential Circuit Design 231

The three input equations for the D flip- flops are derived from the next- state
values and are simplified in the maps of Figure 4-23. Each map has six don’ t- care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be
drawn here.

It is possible that outside interference or a malfunction will cause the circuit to
enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least

 TABLE 4-7
State Table for Designing with Unused States

Present State Input Next State

A B C X A B C

0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 1 0 0

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

 FIGURE 4-23
Maps for Optimizing Input Equations

M04_MANO0637_05_SE_C04.indd 231 23/01/15 1:54 PM

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)

6. Optimisation with Unused
States

• Unused states can be implemented as
don’t care conditions

• In this example 
� , � , � , � , � , �  
are unused, and can all be don’t care
conditions

m0 m1 m12 m13 m14 m15

Exa
mple

P1
Design 4-5 / Sequential Circuit Design 231

The three input equations for the D flip- flops are derived from the next- state
values and are simplified in the maps of Figure 4-23. Each map has six don’ t- care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be
drawn here.

It is possible that outside interference or a malfunction will cause the circuit to
enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least

 TABLE 4-7
State Table for Designing with Unused States

Present State Input Next State

A B C X A B C

0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 1 0 0

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

 FIGURE 4-23
Maps for Optimizing Input Equations

M04_MANO0637_05_SE_C04.indd 231 23/01/15 1:54 PM

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)
DC = Σm(2,4,6,8,10)

6. Optimisation with Unused
States

• Unused states can be implemented as
don’t care conditions

• In this example 
� , � , � , � , � , �  
are unused, and can all be don’t care
conditions

m0 m1 m12 m13 m14 m15

Exa
mple

P1
Design 4-5 / Sequential Circuit Design 231

The three input equations for the D flip- flops are derived from the next- state
values and are simplified in the maps of Figure 4-23. Each map has six don’ t- care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be
drawn here.

It is possible that outside interference or a malfunction will cause the circuit to
enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least

 TABLE 4-7
State Table for Designing with Unused States

Present State Input Next State

A B C X A B C

0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 1 0 0

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

 FIGURE 4-23
Maps for Optimizing Input Equations

M04_MANO0637_05_SE_C04.indd 231 23/01/15 1:54 PM

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)
DC = Σm(2,4,6,8,10)
d = Σm(0,1,12,13,14,15)

6. Optimisation with Unused
States

Exa
mple

P1
Design

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)
DC = Σm(2,4,6,8,10)
d = Σm(0,1,12,13,14,15)

6. Optimisation with Unused
States

Exa
mple

P1
Design

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)
DC = Σm(2,4,6,8,10)
d = Σm(0,1,12,13,14,15)

SEQUENTIAL CIRCUITS

and input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations
are not listed in the state table and hence may be treated as don’t-care minterms.

The three input equations for the D flip-flops are derived from the next-state
values and are simplified in the maps of Figure 25. Each map has six don’t-care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 !

 !

 !

The logic diagram can be obtained directly from the input equations and will not
be drawn here.

It is possible that outside interference or a malfunction will cause the circuit
to enter one of the unused states. Thus, it is sometimes desirable to specify, fully
or at least partially, the next-state values or the output values for the unused
states. Depending on the function and application of the circuit, a number of
ideas may be applied. First, the outputs for the unused states may be specified so
that any actions that result from entry into and transitions between the unused
states are not harmful. Second, an additional output may be provided or an
unused output code employed which indicates that the circuit has entered an
incorrect state. Third, to ensure that a return to normal operation is possible with-
out resetting the entire system, the next-state behavior for the unused states may
be specified. Typically, next states are selected such that one of the normally occur-
ring states is reached within a few clock cycles, regardless of the input values. The
decision as to which of the three options to apply, either individually or in combi-
nation, is based on the application of the circuit or the policies of a particular
design group.

 DA AX BX B C" "

DB A C X A BX"

DC X

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

FIGURE 25
Maps for Optimizing Input Equations

���

6. Optimisation with Unused
States

Exa
mple

P1
Design

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)
DC = Σm(2,4,6,8,10)
d = Σm(0,1,12,13,14,15)

SEQUENTIAL CIRCUITS

and input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations
are not listed in the state table and hence may be treated as don’t-care minterms.

The three input equations for the D flip-flops are derived from the next-state
values and are simplified in the maps of Figure 25. Each map has six don’t-care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 !

 !

 !

The logic diagram can be obtained directly from the input equations and will not
be drawn here.

It is possible that outside interference or a malfunction will cause the circuit
to enter one of the unused states. Thus, it is sometimes desirable to specify, fully
or at least partially, the next-state values or the output values for the unused
states. Depending on the function and application of the circuit, a number of
ideas may be applied. First, the outputs for the unused states may be specified so
that any actions that result from entry into and transitions between the unused
states are not harmful. Second, an additional output may be provided or an
unused output code employed which indicates that the circuit has entered an
incorrect state. Third, to ensure that a return to normal operation is possible with-
out resetting the entire system, the next-state behavior for the unused states may
be specified. Typically, next states are selected such that one of the normally occur-
ring states is reached within a few clock cycles, regardless of the input values. The
decision as to which of the three options to apply, either individually or in combi-
nation, is based on the application of the circuit or the policies of a particular
design group.

 DA AX BX B C" "

DB A C X A BX"

DC X

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

FIGURE 25
Maps for Optimizing Input Equations

���

6. Optimisation with Unused
States

Exa
mple

P1
Design

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)
DC = Σm(2,4,6,8,10)
d = Σm(0,1,12,13,14,15)

SEQUENTIAL CIRCUITS

and input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations
are not listed in the state table and hence may be treated as don’t-care minterms.

The three input equations for the D flip-flops are derived from the next-state
values and are simplified in the maps of Figure 25. Each map has six don’t-care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 !

 !

 !

The logic diagram can be obtained directly from the input equations and will not
be drawn here.

It is possible that outside interference or a malfunction will cause the circuit
to enter one of the unused states. Thus, it is sometimes desirable to specify, fully
or at least partially, the next-state values or the output values for the unused
states. Depending on the function and application of the circuit, a number of
ideas may be applied. First, the outputs for the unused states may be specified so
that any actions that result from entry into and transitions between the unused
states are not harmful. Second, an additional output may be provided or an
unused output code employed which indicates that the circuit has entered an
incorrect state. Third, to ensure that a return to normal operation is possible with-
out resetting the entire system, the next-state behavior for the unused states may
be specified. Typically, next states are selected such that one of the normally occur-
ring states is reached within a few clock cycles, regardless of the input values. The
decision as to which of the three options to apply, either individually or in combi-
nation, is based on the application of the circuit or the policies of a particular
design group.

 DA AX BX B C" "

DB A C X A BX"

DC X

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

FIGURE 25
Maps for Optimizing Input Equations

���

6. Optimisation with Unused
States

Exa
mple

P1
Design

DA = Σm(5,7,8,9,11)
DB = Σm(3,4)
DC = Σm(2,4,6,8,10)
d = Σm(0,1,12,13,14,15)

SEQUENTIAL CIRCUITS

and input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations
are not listed in the state table and hence may be treated as don’t-care minterms.

The three input equations for the D flip-flops are derived from the next-state
values and are simplified in the maps of Figure 25. Each map has six don’t-care
minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-
mized equations are

 !

 !

 !

The logic diagram can be obtained directly from the input equations and will not
be drawn here.

It is possible that outside interference or a malfunction will cause the circuit
to enter one of the unused states. Thus, it is sometimes desirable to specify, fully
or at least partially, the next-state values or the output values for the unused
states. Depending on the function and application of the circuit, a number of
ideas may be applied. First, the outputs for the unused states may be specified so
that any actions that result from entry into and transitions between the unused
states are not harmful. Second, an additional output may be provided or an
unused output code employed which indicates that the circuit has entered an
incorrect state. Third, to ensure that a return to normal operation is possible with-
out resetting the entire system, the next-state behavior for the unused states may
be specified. Typically, next states are selected such that one of the normally occur-
ring states is reached within a few clock cycles, regardless of the input values. The
decision as to which of the three options to apply, either individually or in combi-
nation, is based on the application of the circuit or the policies of a particular
design group.

 DA AX BX B C" "

DB A C X A BX"

DC X

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

FIGURE 25
Maps for Optimizing Input Equations

���

Systematic Design Procedures 
Sequential Circuits

1. Specification

2. Formulation 
e.g. using state table or state diagram

3. State Assignment: assign binary codes to states

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input equations from next-state
entries

5. Output Equation Determination: Derive output equations from the output entries

6. Optimisation

7. Technology Mapping

8. Verification

Conc
ep

t

P1
Design

Systematic Design Procedures
Sequential Circuits

Specification

Formulation

Optimisation

Technology Mapping

Verification

Summary

3. State Assignment: assign binary codes to states

4. Flip-Flop Input Equation Determination: Select flip-flop types, derive input
equations from next-state entries

5. Output Equation Determination: Derive output equations from the output
entries

6. Optimisation with unused states

Rev
iew

P1
Design

Some Other Flip-Flop
Types

Sum
mary

P2
Other Flip-Flop

� Flip-Flop; � Flip-FlopJK T

! Flip-FlopT

• Conditional Inverter

Conc
ep

t

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopT

• Follow 8 step design principles

• Write down the boolean expression

• Draw the circuit diagram

Exa
mple

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopT
3. State Assignment

4. Flip-Flop Input Equation 

5. Output Equation Determination

6. Optimisation

7. Technology Mapping

Exa
mple

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopT
3. State Assignment

4. Flip-Flop Input Equation 
�

5. Output Equation Determination

6. Optimisation

7. Technology Mapping

Q(t + 1) = Q ⊕ T

Exa
mple

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopT
3. State Assignment

4. Flip-Flop Input Equation 
�

5. Output Equation Determination

6. Optimisation

7. Technology Mapping

Q(t + 1) = Q ⊕ T

P2
Other Flip-Flop

Exa
mple

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

C

! Flip-FlopJK

• Similar to � Master-Slave Flip-Flop 
with 11 input inverting internal value

SR

Conc
ep

t

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopJK

• Follow 8 step design principles

• Write down the boolean expression

• Draw the circuit diagram

Exa
mple

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopJK
3. State Assignment

4. Flip-Flop Input Equation 

5. Output Equation Determination

6. Optimisation

7. Technology Mapping

Exa
mple

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopJK
3. State Assignment

4. Flip-Flop Input Equation 
�

5. Output Equation Determination

6. Optimisation

7. Technology Mapping

Q(t + 1) = J ⋅ Q + K ⋅ Q

Exa
mple

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

! Flip-FlopJK
3. State Assignment

4. Flip-Flop Input Equation 
�

5. Output Equation Determination

6. Optimisation

7. Technology Mapping

Q(t + 1) = J ⋅ Q + K ⋅ Q

P2
Other Flip-Flop

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

Exa
mple

SEQ
U

EN
T

IA
L C

IR
C

U
IT

S

Characteristic Table Characteristic Equation Excitation TableType

D

SR

JK

T

D

0
1

Operation

0

0

1

1

0

0

1

1

Reset
Set

OperationS

0

1

0

1

R

No change

Reset

Set

Undefined

0
1

0
1

D Operation

Operation

Reset
Set

Q(t)

No change

Set

Reset

No change

S

X

0

1

0

0

1

1

0

0

1

1

0

Q(t)

0

0

1

1

1

0

T

Q(t)

0

0

1

1

Operation

R

X

0

X

X

0

1

1

0

K

0

1

X

X

J

No change

Set

Reset

No change

No change

No change

Set

Reset

Complement

Complement

No change

Complement

OperationOperation

OperationJ

0

1

0

1

K

0

1

T

Symbol Logic Diagrams

See Figure 6-13

See Figure 6-10

C

DT

D

C
K

J

0

1

0

1

?

Q(t)

Q(t)

Q(t)

Q(t)

Q(t)

0
1

D

C

Q(t)

S
C
R

J
C

K

T

C

TABLE 8
Flip-Flop Logic, Characteristic Tables and Equations, and Excitation Tables

���

Implementation

* If you have LogicWorks, please practice using LogicWorks

* If you do not have LogicWorks, please complete the state table with all valid
inputs

• Implement � Flip-Flop

• Is there any other way to implement? What if you cannot use � Flip-Flop?

• Implement � Flip-Flop

JK

D

T

Te
ch

nic
al

P2
Other Flip-Flop

