
02.03.20 11:58CSCI 150
Introduction to Digital and Computer

System Design
Midterm Review I

Jetic Gū

2020 Winter Semester (S1)

Overview
• Focus: Review

• Architecture: Combinational Logic Circuit

• Textbook v4: Ch1-4; v5: Ch1-3

• Core Ideas:

1. Digital Information Representation (Lecture 1)

2. Combinational Logic Circuits (Lecture 2)

3. Combinational Functional Blocks, Arithmetic Blocks (Lecture 3)

Lecture 1: Digital
Information Representation

Sum
mary

P1
Digital Rep.

Analog vs Digital circuits; Modern computer architectures; Embedded systems;

Number Systems; Conversions;

Arithmetic Operations; Alphanumeric Codes

Analog vs Digital circuits
• Digital Circuits

• Process digital signals

• Current/Voltage represent discrete
logical and numeric values

Conc
ep

t

P1.1
Digital Rep.

• Analog Circuits

• Process analog signals

• Current/Voltage vary continuously
to represent information

-1

-0.5

0

0.5

1

0

0.25

0.5

0.75

1

CPU

Von Neumann Architecture
A very rough example

Dem
o

P1.1
Digital Rep.

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

CPU

Von Neumann Architecture
A very rough example

Dem
o

P1.1
Digital Rep.

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1:
X1: 1 (00010001)
X2: 1 (00100001)
X3: X1+X2 (01110110)

CPU

Von Neumann Architecture
A very rough example

Dem
o

P1.1
Digital Rep.

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1:
X1: 1 (00010001)
X2: 1 (00100001)
X3: X1+X2 (01110110)

M1: 1 (00000001)

CPU exe.

CPU

Von Neumann Architecture
A very rough example

Dem
o

P1.1
Digital Rep.

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1:
X1: 1 (00010001)
X2: 1 (00100001)
X3: X1+X2 (01110110)

M1: 1 (00000001)

CPU exe.
M2: 1 (00000001)

CPU

Von Neumann Architecture
A very rough example

Dem
o

P1.1
Digital Rep.

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1:
X1: 1 (00010001)
X2: 1 (00100001)
X3: X1+X2 (01110110)

M1: 1 (00000001)

1+1=2

CPU exe.

M2: 1 (00000001)

CPU

Von Neumann Architecture
A very rough example

Dem
o

P1.1
Digital Rep.

1. Von Neumann Architecture

Input/Output
devices

Control
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1:
X1: 1 (00010001)
X2: 1 (00100001)
X3: X1+X2 (01110110)

M1: 1 (00000001)

1+1=2

M3: 2 (00000010)CPU exe.

M2: 1 (00000001)

Computer

Conc
ep

t

P1.1
Digital Rep.

1. Von Neumann Architecture

What’s it like compared to a human?

Computer

Conc
ep

t

P1.1
Digital Rep.

1. Von Neumann Architecture

• Input/Output devices

What’s it like compared to a human?

Computer

Conc
ep

t

P1.1
Digital Rep.

1. Von Neumann Architecture

• Input/Output devices

• Interaction (Mouth, hands and feet, eyes, etc.)

What’s it like compared to a human?

Computer

Conc
ep

t

P1.1
Digital Rep.

1. Von Neumann Architecture

• Input/Output devices

• Interaction (Mouth, hands and feet, eyes, etc.)

• CPU + Memory

What’s it like compared to a human?

Computer

Conc
ep

t

P1.1
Digital Rep.

1. Von Neumann Architecture

• Input/Output devices

• Interaction (Mouth, hands and feet, eyes, etc.)

• CPU + Memory

• Processing information, thinking (Brain, short-term memory)

What’s it like compared to a human?

Computer

Conc
ep

t

P1.1
Digital Rep.

1. Von Neumann Architecture

• Input/Output devices

• Interaction (Mouth, hands and feet, eyes, etc.)

• CPU + Memory

• Processing information, thinking (Brain, short-term memory)

• Storage?

What’s it like compared to a human?

Computer

Conc
ep

t

P1.1
Digital Rep.

1. Von Neumann Architecture

• Input/Output devices

• Interaction (Mouth, hands and feet, eyes, etc.)

• CPU + Memory

• Processing information, thinking (Brain, short-term memory)

• Storage?

• Part of I/O devices (Books, long-term memory)

What’s it like compared to a human?

Embedded Systems

Conc
ep

t

P1.1
Digital Rep.

Embedded Systems

Conc
ep

t

P1.1
Digital Rep.

• Similar to computers: processes information

Embedded Systems

Conc
ep

t

P1.1
Digital Rep.

• Similar to computers: processes information

• Difference

Embedded Systems

Conc
ep

t

P1.1
Digital Rep.

• Similar to computers: processes information

• Difference

• Function is usually simpler, and very very specific

Embedded Systems

Conc
ep

t

P1.1
Digital Rep.

• Similar to computers: processes information

• Difference

• Function is usually simpler, and very very specific

• Not programmable

Decimal System

• Numbers as strings of digits, each ranging from 0-9

• The decimal system is of base(radix) 10

Rev
iew

P1.2
Number Systems

7 2 4 0 5.7 2 4 0 5

Decimal System

• Numbers as strings of digits, each ranging from 0-9

• The decimal system is of base(radix) 10

Rev
iew

P1.2
Number Systems

7 2 4 0 5.7 2 4 0 5
00

Decimal System

• Numbers as strings of digits, each ranging from 0-9

• The decimal system is of base(radix) 10

Rev
iew

P1.2
Number Systems

7 2 4 0 5.7 2 4 0 5
1 0 −11 0 −1

Decimal System

• Numbers as strings of digits, each ranging from 0-9

• The decimal system is of base(radix) 10

Rev
iew

P1.2
Number Systems

7 2 4 0 5.7 2 4 0 5
2 1 0 −1−22 1 0 −1−2

= 7 × 102 + 2 × 101 + 4 × 100 + 0 × 10−1 + 5 × 10−2

Decimal System

• Numbers as strings of digits, each ranging from 0-9

• The decimal system is of base(radix) 10

Rev
iew

P1.2
Number Systems

7 2 4 0 5.

7 2 4 0 5
2 1 0 −1−2

2 1 0 −1 −2

Numbers of base N

• Default base: 10

• When there are numbers represented in different bases, attach base

• Decimal: 754.05 -> (754.05)10

• e.g. Base 5: (432.1)5 = ?

Conc
ep

t

P1.2
Number Systems

= 4 × 52 + 3 × 51 + 2 × 50 + 1 × 5−1 = (117.2)10

Binary Systems in Computers

Conc
ep

t

P1.2
Number Systems

Binary Systems in Computers

• Every 8bit is called a Byte

Conc
ep

t

P1.2
Number Systems

Binary Systems in Computers

• Every 8bit is called a Byte

• 1,024 = 210 is called K (Kilo)

Conc
ep

t

P1.2
Number Systems

Binary Systems in Computers

• Every 8bit is called a Byte

• 1,024 = 210 is called K (Kilo)

• 1,024 x 1,024 = 220 is called M (Mega)

Conc
ep

t

P1.2
Number Systems

Binary Systems in Computers

• Every 8bit is called a Byte

• 1,024 = 210 is called K (Kilo)

• 1,024 x 1,024 = 220 is called M (Mega)

• 1,024 x 1,024 x 1,024 = 240 is called G (Giga)

Conc
ep

t

P1.2
Number Systems

Binary Systems in Computers

• Every 8bit is called a Byte

• 1,024 = 210 is called K (Kilo)

• 1,024 x 1,024 = 220 is called M (Mega)

• 1,024 x 1,024 x 1,024 = 240 is called G (Giga)

• Tera, Peta, Exa, Zetta, Yotta

Conc
ep

t

P1.2
Number Systems

Binary Systems in Computers

Conc
ep

t

P1.2
Number Systems !

Binary Systems in Computers

• What is the difference between MBps and Mbps?

Conc
ep

t

P1.2
Number Systems !

Binary Systems in Computers

• What is the difference between MBps and Mbps?

• MegaBytes per second vs MegaBits per second

Conc
ep

t

P1.2
Number Systems !

Binary Systems in Computers

• What is the difference between MBps and Mbps?

• MegaBytes per second vs MegaBits per second

• 8x difference!

Conc
ep

t

P1.2
Number Systems !

Binary Systems in Computers

• What is the difference between MBps and Mbps?

• MegaBytes per second vs MegaBits per second

• 8x difference!

Conc
ep

t

P1.2
Number Systems !

Octal and Hexadecimal
Systems

• Octal: base 8

• digits: 0-7

• Hexadecimal: base 16

• digits: 0-9, A-F (10-15)

Conc
ep

t

P1.2
Number Systems

Conversions

• Binary-to- 
Octal: 3bits per octal digit 
Hexadecimal: 4bits per octal digit 
Decimal: use the chart

• Decimal-to- 
Binary: use the chart 
Oct/Hex: do binary first

Conc
ep

t

P1.2
Number Systems

10 9 8 7 6 5 4 3 2 1

1024 512 256 128 64 32 16 8 4 2

Arithmetics

• The same as decimal (mostly)

•

Conc
ep

t

P1.3
Arithmetics

0010
+0011

0101

0101
−0011

0010
Example (binary)

Arithmetics

Dem
o

P1.3
Arithmetics

OCTAL Multiplication

00762
× 00054

04672
37100
43772

5 × 2 = 12
5 × 6 + 1 = 37
5 × 7 + 3 = 46

Octal Octal Decimal

. . .

10 = (12)8
31 = (37)8
38 = (46)8

. . .

Signed & Unsigned Integers

• Unsigned 8bit:

• (11111111)2 = 255

• Signed 8bit (only in digital circuits):

• 127 -> '01111111'

• -127 -> '11111111'

Conc
ep

t

P1.4
Representations

10001111
First digit:
• 0 for positive
• 1 for negative

(binary, 8bit, signed)

Signed & Unsigned Integers

• Unsigned 8bit integer: 0 - 255

• Signed 8bit integer: -128 - 127

• Unsigned 32bit integer: 0 - 4,294,967,295

• Signed 32bit integer: -2,147,483,648 - 2,147,483,647

• Unless otherwise specified, treat as unsigned

Conc
ep

t

P1.4
Representations

Binary Coded Decimal

• Decimal numbers, each digit represented in 4bit binary, but separately

• 185 = (0001 1000 0101)BCD = (10111001)2

• Used in places where using decimals directly is more convenient, such as
digital watches etc.

Conc
ep

t

P1.4
Representations

ASCII

Dem
o

P1.4
Representations

• American Standard Code for Information Interchange

• Assign each character with a 8bit binary code (e.g. '0'-'9', 'A'-'Z', 'a'-'z')

• The first bit is always 0

Parity CodeP1.4
Representations

Dem
o

• For error detection in data communication

• e.g. resulting from packet loss or other forms of interference

• One parity bit for n-bits

• An extra even parity bit: whether the number of 1s is not even

• An extra odd parity: whether the number of 1s is not odd

• Can be placed in any fixed position

• Does it always work?

Parity CodeP1.4
Representations

Dem
o

Original 7bits with Even parity with Odd parity

1000001 01000001 11000001

1010100 11010100 01010100

Circuits

Rev
iew

P1.5
Lect 1 Summary

Circuits

• Circuits

Rev
iew

P1.5
Lect 1 Summary

Circuits

• Circuits

• Digital and Analog

Rev
iew

P1.5
Lect 1 Summary

Circuits

• Circuits

• Digital and Analog

• Integrated systems

Rev
iew

P1.5
Lect 1 Summary

Circuits

• Circuits

• Digital and Analog

• Integrated systems

• Von Neumann computers

Rev
iew

P1.5
Lect 1 Summary

Circuits

• Circuits

• Digital and Analog

• Integrated systems

• Von Neumann computers

• Embedded systems

Rev
iew

P1.5
Lect 1 Summary

Number Systems

Rev
iew

P1.5
Lect 1 Summary

Number Systems

• Number systems of base N

Rev
iew

P1.5
Lect 1 Summary

Number Systems

• Number systems of base N

• Binary systems

Rev
iew

P1.5
Lect 1 Summary

Number Systems

• Number systems of base N

• Binary systems

• Octal and Hexadecimal systems

Rev
iew

P1.5
Lect 1 Summary

Number Systems

• Number systems of base N

• Binary systems

• Octal and Hexadecimal systems

• Arithmetics

Rev
iew

P1.5
Lect 1 Summary

Number Systems in DC

• Bit, Byte, Representation ranges

• Signed and Unsigned Binary Integers

• BCD, ASCII, UTF8

• Parity bit

Rev
iew

P1.5
Lect 1 Summary

Digital to Analog Conversion

Rev
iew

P1.5
Lect 1 Summary

Digital to Analog Conversion

• Frequency: number of cycles per second

Rev
iew

P1.5
Lect 1 Summary

Digital to Analog Conversion

• Frequency: number of cycles per second

• Sample rate: number of samples per unit time

Rev
iew

P1.5
Lect 1 Summary

Digital to Analog Conversion

• Frequency: number of cycles per second

• Sample rate: number of samples per unit time

• Bitrate: number of bits per second

Rev
iew

P1.5
Lect 1 Summary

Lecture 2: Combinational
Logic Circuits

Sum
mary

P2
Logic Circuits

Logic Gates; Boolean Algebra; Minterm/Maxterm; K-
Map; Some Other Gate Types

First 3 Gates

Conc
ep

t

P2.1
Logic Gates

Z = X ⋅ YX
Y

Z = X + YX
Y

Z = XX

AND Gate

OR Gate

NOT Gate

First 3 Gates

Conc
ep

t

P2.1
Logic Gates

Z = X ⋅ YX
Y

Z = X + YX
Y

Z = XX

AND Gate

OR Gate

NOT Gate

Input

First 3 Gates

Conc
ep

t

P2.1
Logic Gates

Z = X ⋅ YX
Y

Z = X + YX
Y

Z = XX

AND Gate

OR Gate

NOT Gate

Input Output

Truth Table

Exa
mple

P2.1
Logic Gates

Truth Table

0 0 0

0 1 1

1 0 1

1 1 1

X
Y Z

ZYX

Truth Table

Exa
mple

P2.1
Logic Gates

Truth Table

0 0 0

0 1 1

1 0 1

1 1 1

X
Y Z

ZYX = (X ⋅ Y) + (X + Y)

Basic Identities

Conc
ep

t

P2.2
Boolean Algebra

Basic Identities
• Boolean Algebra solving

Conc
ep

t

P2.2
Boolean Algebra

Basic Identities
• Boolean Algebra solving

• Identify rules applicable to the expression

Conc
ep

t

P2.2
Boolean Algebra

Basic Identities
• Boolean Algebra solving

• Identify rules applicable to the expression

• Apply rules that can help you simplify the expression

Conc
ep

t

P2.2
Boolean Algebra

Basic Identities
• Boolean Algebra solving

• Identify rules applicable to the expression

• Apply rules that can help you simplify the expression

• Simplification: reducing the number of variables and operators in an
expression without changing it’s truth table values

Conc
ep

t

P2.2
Boolean Algebra

Basic Identities
• Boolean Algebra solving

• Identify rules applicable to the expression

• Apply rules that can help you simplify the expression

• Simplification: reducing the number of variables and operators in an
expression without changing it’s truth table values

• Atomic element: an element that can’t have the number of its variables
and operators reduced any further

Conc
ep

t

P2.2
Boolean Algebra

Basic Identities

1.

2.

3.

4.

5.

X + 0 = X

X ⋅ 1 = X

X + 1 = 1

X ⋅ 0 = 0

X + X = X

Conc
ep

t

P2.2
Boolean Algebra

6.

7.

8.

9.

X ⋅ X = X

X + X = 1

X ⋅ X = 0

X = X

Basic Identities
• Communicative

10.

11.

• Associative

12.

13.

X + Y = Y + X

XY = YX

X + (Y + Z) = (X + Y) + Z

X(YZ) = (XY)Z

Conc
ep

t

P2.2
Boolean Algebra

• Distributive

14.

15.

• DeMorgan’s

16.

17.

X(Y + Z) = XY + XZ

X + (YZ) = (X + Y)(X + Z)

X + Y = X ⋅ Y

X ⋅ Y = X + Y

Basic Identities

A.

B.

C.

X + XY = X

XY + XY = X

X + XY = X + Y

Sam
ples

P2.2
Boolean Algebra

D.

E.

F.

X(X + Y) = X

(X + Y)(X + Y) = X

X(X + Y) = XY

Complementation

• : complement (invert) representation for a function , obtained from an
interchange of 1s to 0s and 0s to 1s for the values of in the truth table

• Apply DeMorgan’s Rule

16.

17.

F F
F

X1 + X2 + . . . + Xn = X1 ⋅ X2 ⋅ . . . ⋅ Xn

X1 ⋅ X2 ⋅ . . . ⋅ Xn = X1 + X2 + . . . + Xn

Conc
ep

t

P2.2
Boolean Algebra

Algebraic Manipulation

Difficulty: Simple

Simplify the following expressions

•

•

X ⋅ Y + XYZ + XY

X + Y(Z + X + Z)

Exe
rci

se

P2.2
Boolean Algebra

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

•

•

WX(Z + YZ) + X(W + WYZ)

(AB + AB)(CD + CD) + AC

Exe
rci

se

P2.2
Boolean Algebra

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

•

•

A ⋅ C + ABC + BC

A + B + C ⋅ ABC

Exe
rci

se

P2.2
Boolean Algebra

Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

•

•

ABC + AC

A ⋅ BD + A ⋅ CD + BD

Exe
rci

se

P2.2
Boolean Algebra

Algebraic Manipulation

Difficulty: HARDCORE

Prove the identity of each of the following Boolean equations

•

•

•

ABC + BC ⋅ D + BC + CD = B + CD

WY + WYZ + WXZ + WXY = WY + WXZ + XYZ + XYZ

AD + AB + CD + BC = (A + B + C + D)(A + B + C + D)

Exe
rci

se

P2.2
Boolean Algebra

Standard Forms

• Equivalent expressions can be written in a variety of ways 
Standard forms: typical such ways that incorporates some unique
characteristics -> simplify the implementation of these designs

• Product terms (AND terms): e.g.  
Literals with inverts connected through only AND operators

• Sum terms (OR terms): e.g.  
Literals with inverts connected through only AND operators

XYZ

X + Y + Z

Conc
ep

t

P2.3
Standard Forms

Minterms and Maxterms

• Minterm 
Product term; Contains all variables; Has only one Positive row in the truth
table

Conc
ep

t

P2.3
Standard Forms

XY

X Y

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

m0 = XY m1 = XY m2 = XY m3 = XY
(00)2=0

(01)2=1

(10)2=2

(11)2=3

Minterms and Maxterms

• Maxterm 
Sum term; Contains all variables; Has only one Negative row in the truth
table

Conc
ep

t

P2.3
Standard Forms

X Y

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

M3 = X + YM2 = X + YM1 = X + YM0 = X + Y

Minterms and Maxterms

• Maxterm 
Sum term; Contains all variables; Has only one Negative row in the truth
table

Conc
ep

t

P2.3
Standard Forms

X Y

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

M3 = X + YM2 = X + YM1 = X + YM0 = X + Y

Mi = mi

Minterms and Maxterms
• e.g.

• Sum of Minterms

• e.g.  

• Product of Maxterm

• e.g.  
  

M3 = X + Y + Z = XYZ = m3

F = XYZ + XYZ + XYZ + XYZ = m0 + m2 + m5 + m7
= Σm(0,2,5,7)

F = (X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)
= M0M2M5M7
= ΠM(0,2,5,7)

Conc
ep

t

P2.3
Standard Forms

Two Variable Maps

Conc
ep

t

P2.4
K-Map

2-4 / Two-Level Circuit Optimization 63

than sum- of- products and product- of- sums, the gate- input count must be deter-
mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is
not necessarily unique. It is sometimes possible to !nd two or more expressions that
satisfy the cost criterion applied. In that case, either solution is satisfactory from the
cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The
number of squares in each map is equal to the number of minterms in the corre-
sponding function. In our discussion of minterms, we de!ned a minterm mi to go with
the row of the truth table with i in binary as the variable values. This use of i to

(a) (b)

0

1

0 1
Y

X

X Y X Y

X YX Y

(c) (d)

ZX

ZX

0

6 4

13

57

2

X Z

0
2

8 10

1 39
11

(f)(e)

00

01

00 01
YZ

WX

Y

Z

W

11 10

11

10

X

X Z

0 1

2 3 X

Y

0

1

0 1
Y

X

Y

X

Z

0 1 3 2

4 5 7 6

YZ

X

0

00 01 11 10

1

1 3 2

4 5 7 6

8 9 1011

12 13 1415

0

 FIGURE 2-12
Map Structures

M02_MANO0637_05_SE_C02.indd 63 23/01/15 1:47 PM

• Number of squares in each map is equal to the number of minterms for the same number of variables,
light blue digit above is the index (of minterm)

• Two squares are adjacent if they only differ in one variable

• Binary value inside at each position indicates the truth table value for that term

Three Variable Maps

Conc
ep

t

P2.4
K-Map

• Number of squares in each map is equal to the number of minterms for the same number of variables,
light blue digit above is the index (of minterm)

• Two squares are adjacent if they only differ in one variable

• Binary value inside at each position indicates the truth table value for that term

2-4 / Two-Level Circuit Optimization 63

than sum- of- products and product- of- sums, the gate- input count must be deter-
mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is
not necessarily unique. It is sometimes possible to !nd two or more expressions that
satisfy the cost criterion applied. In that case, either solution is satisfactory from the
cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The
number of squares in each map is equal to the number of minterms in the corre-
sponding function. In our discussion of minterms, we de!ned a minterm mi to go with
the row of the truth table with i in binary as the variable values. This use of i to

(a) (b)

0

1

0 1
Y

X

X Y X Y

X YX Y

(c) (d)

ZX

ZX

0

6 4

13

57

2

X Z

0
2

8 10

1 39
11

(f)(e)

00

01

00 01
YZ

WX

Y

Z

W

11 10

11

10

X

X Z

0 1

2 3 X

Y

0

1

0 1
Y

X

Y

X

Z

0 1 3 2

4 5 7 6

YZ

X

0

00 01 11 10

1

1 3 2

4 5 7 6

8 9 1011

12 13 1415

0

 FIGURE 2-12
Map Structures

M02_MANO0637_05_SE_C02.indd 63 23/01/15 1:47 PM

Four Variable Maps

Conc
ep

t

P2.4
K-Map

2-4 / Two-Level Circuit Optimization 63

than sum- of- products and product- of- sums, the gate- input count must be deter-
mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is
not necessarily unique. It is sometimes possible to !nd two or more expressions that
satisfy the cost criterion applied. In that case, either solution is satisfactory from the
cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The
number of squares in each map is equal to the number of minterms in the corre-
sponding function. In our discussion of minterms, we de!ned a minterm mi to go with
the row of the truth table with i in binary as the variable values. This use of i to

(a) (b)

0

1

0 1
Y

X

X Y X Y

X YX Y

(c) (d)

ZX

ZX

0

6 4

13

57

2

X Z

0
2

8 10

1 39
11

(f)(e)

00

01

00 01
YZ

WX

Y

Z

W

11 10

11

10

X

X Z

0 1

2 3 X

Y

0

1

0 1
Y

X

Y

X

Z

0 1 3 2

4 5 7 6

YZ

X

0

00 01 11 10

1

1 3 2

4 5 7 6

8 9 1011

12 13 1415

0

 FIGURE 2-12
Map Structures

M02_MANO0637_05_SE_C02.indd 63 23/01/15 1:47 PM

• Number of squares in each map is equal to the number of minterms for the same number of variables,
light blue digit above is the index (of minterm)

• Two squares are adjacent if they only differ in one variable

• Binary value inside at each position indicates the truth table value for that term

K Map Optimisation

Conc
ep

t

P2.4
K-Map

F(X, Y, Z) = Σm(0,1,2,3,4,5)

K Map Optimisation

Conc
ep

t

P2.4
K-Map

• Step 1: Enter the values

F(X, Y, Z) = Σm(0,1,2,3,4,5)

K Map Optimisation

Conc
ep

t

P2.4
K-Map

• Step 1: Enter the values

F(X, Y, Z) = Σm(0,1,2,3,4,5)

1

1

1

1

1 1

K Map Optimisation

Conc
ep

t

P2.4
K-Map

• Step 1: Enter the values

• Step 2: Identify the set of largest
rectangles in which all values
are 1, covering all 1s

F(X, Y, Z) = Σm(0,1,2,3,4,5)

1

1

1

1

1 1

K Map Optimisation

Conc
ep

t

P2.4
K-Map

• Step 1: Enter the values

• Step 2: Identify the set of largest
rectangles in which all values
are 1, covering all 1s

F(X, Y, Z) = Σm(0,1,2,3,4,5)

1

1

1

1

1 1

K Map Optimisation

Conc
ep

t

P2.4
K-Map

• Step 1: Enter the values

• Step 2: Identify the set of largest
rectangles in which all values
are 1, covering all 1s

• Step 3: Read off the selected
rectangles. If rectangle has odd
length edges (excluding 1), split

F(X, Y, Z) = Σm(0,1,2,3,4,5)

1

1

1

1

1 1

K Map Optimisation

Conc
ep

t

P2.4
K-Map

• Step 1: Enter the values

• Step 2: Identify the set of largest
rectangles in which all values
are 1, covering all 1s

• Step 3: Read off the selected
rectangles. If rectangle has odd
length edges (excluding 1), split

F(X, Y, Z) = Σm(0,1,2,3,4,5)

1

1

1

1

1 1

= X + Y

XOR Gate

Conc
ep

t

P2.5
Other Gates

XOR Gate 
Exclusive-OR Z = X ⊕ YX

Y
XOR Truth Table

0 0 0

0 1 1

1 0 1

1 1 0

Z = X ⊕ YYX

•

•

•

X ⊕ 0 = X

X ⊕ X = X

X ⊕ Y = X ⊕ Y

•

•

•

X ⊕ 1 = X

X ⊕ X = 1

X ⊕ Y = X ⊕ Y

XOR Gate

Conc
ep

t

P2.5
Other Gates

XOR Gate 
Exclusive-OR Z = X ⊕ YX

Y
XOR Truth Table

0 0 0

0 1 1

1 0 1

1 1 0

Z = X ⊕ YYX= XY + XY

•

•

•

X ⊕ 0 = X

X ⊕ X = X

X ⊕ Y = X ⊕ Y

•

•

•

X ⊕ 1 = X

X ⊕ X = 1

X ⊕ Y = X ⊕ Y

XOR Gate

Conc
ep

t

P2.5
Other Gates

•

•

•

X ⊕ 0 = X

X ⊕ X = X

X ⊕ Y = X ⊕ Y

•

•

•

X ⊕ 1 = X

X ⊕ X = 1

X ⊕ Y = X ⊕ Y

N-Gates

Conc
ep

t

P2.5
Other Gates

NAND Gate Z = X ⋅ Y
X
Y

Z = XXNOT Gate

NOR Gate Z = X + Y
X
Y

XNOR Gate Z = X ⊕ YX
Y

Boolean Algebra
I. AND, OR, NOT Operators and Gates

• Simple digital circuit implementation

• Algebraic manipulation using Binary Identities

II. Standard Forms

• Minterm & Maxterm

• Sum of Products & Product of Sums

III. Optimisation Using K-Map (For 2,3,4 Variables)

IV. XOR, NAND, NOR, XNOR

Rev
iew

P2.6
Lect 2 Summary

Systematic Design Procedures
1. Specification: Write a specification for the circuit

2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions

3. Optimisation: Apply optimisation, minimise the number of logic gates and
literals required

4. Technology Mapping: Transform design to new diagram using available
implementation technology

5. Verification: Verify the correctness of the final design in meeting the
specifications

Conc
ep

t

P3.1
Comb. Design

Hierarchical Design

Conc
ep

t

P3.1
Comb. Design

Hierarchical Design

• "divide-and-conquer"

Conc
ep

t

P3.1
Comb. Design

Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

Conc
ep

t

P3.1
Comb. Design

Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour

Conc
ep

t

P3.1
Comb. Design

Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour

• A single block can be reused multiple times to simplify design process

Conc
ep

t

P3.1
Comb. Design

Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour

• A single block can be reused multiple times to simplify design process

• If a single block is too complex, it can be further divided into smaller
blocks, to allow for easier designs

Conc
ep

t

P3.1
Comb. Design

Value-Fixing, Transferring, and
Inverting

Conc
ep

t

P3.2
Elementary Func.

① Value-Fixing: giving a constant value to a wire

• ; ;

② Transferring: giving a variable (wire) value from another variable (wire)

• ;

③ Inverting: inverting the value of a variable

•

F = 0 F = 1

F = X

F = X

Vector Denotation

Conc
ep

t

P3.2
Elementary Func.

④ Multiple-bit Function

• Functions we’ve seen so far has only one-bit output: 0/1

• Certain functions may have -bit output

• , each is a one-bit function

• Curtain Motor Control Circuit:

n

F(n − 1 : 0) = (Fn−1, Fn−2, . . . , F0) Fi

F = (FMotor1
, FMotor2

, FLight)

Taking part of the Vector

Conc
ep

t

P1
Elementary Func.124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

④ Multiple-bit Function

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Output: (F2, F1)

Output: (F3, F1, F0)

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Taking part of the Vector

Conc
ep

t

P1
Elementary Func.124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

④ Multiple-bit Function

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Output: (F2, F1)

Output: (F3, F1, F0)

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Dimension

Taking part of the Vector

Conc
ep

t

P1
Elementary Func.124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

④ Multiple-bit Function

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Output: (F2, F1)

Output: (F3, F1, F0)

124 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists
of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F
as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of
multiple, related wires by using a single line of greater thickness with a slash, across
the line. An integer giving the number of wires represented accompanies the slash as
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the
process of transferring, we may wish to use only a subset of the elements in F—for
example, F2 and F1. The notation for the bits of F can be used for this purpose, as
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic
design. Value !xing involves replacing one or more variables with constant values
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing,
the value can never be changed. In temporary value !xing, the values can be
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is
in programmable logic devices. Any logic function that is within the capacity of the
programmable device can be implemented by !xing a set of values, as illustrated in
the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall
speci!es that the switches that control the normal lights be programmable. There are
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

M03_MANO0637_05_SE_C03.indd 124 23/01/15 1:51 PM

Dimension

Selected
Indices

Enabler

Conc
ep

t

P3.2
Elementary Func.

⑤ Enabler

• Transferring function, but with an additional signal acting as switchEN

EN X F

0 X 0

1 0 0

1 1 1

Enabler

Conc
ep

t

P3.2
Elementary Func.

⑤ Enabler

• Transferring function, but with an additional signal acting as switchEN

EN
X

F EN
X

F

Decoder
• -bit input, bits output

•

• Design: use hierarchical designs!

n 2n

Di = mi

Conc
ep

t

P3.3
Adv. Func. Blocks

A1 A0 D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Decoder
• -bit input, bits output

•

• Design: use hierarchical designs!

n 2n

Di = mi

Conc
ep

t

P3.3
Adv. Func. Blocks

A1 A0 D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

3-5 / Decoding 129

each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by
a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders,
one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm
function using a single AND gate with more inputs. Unfortunately, as decoders
become larger, this approach gives a high gate-input cost. In this section, we give
a procedure that uses design hierarchy and collections of AND gates to con-
struct any decoder with n inputs and 2n outputs. The resulting decoder has the
same or a lower gate-input cost than the one constructed by simply enlarging each
AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder
and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms.
Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line
decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting
structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-
ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND

A
D0 ! A

D0

D1 ! A

D1

0 1 0
1 0 1

(a) (b)

A

 FIGURE 3-12
A 1–to–2-Line Decoder

A1

0
0
1
1

A0

0
1
0
1

D0

1
0
0
0

D1

0
1
0
0

D2

0
0
1
0

D3

0
0
0
1

(a)

(b)

A

D A1A0

A1A0

A1A0

A1A0D

D

D

1

A0

 FIGURE 3-13
A 2–to–4-Line Decoder

M03_MANO0637_05_SE_C03.indd 129 23/01/15 1:51 PM

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Encoder

• Inverse operation of a decoder

• inputs, only one is giving positive
input1

• outputs

2n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

1. In reality, could be less

A0

A1

A2

A0

A1

A2

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

Encoder

• Inverse operation of a decoder

• inputs, only one is giving positive
input1

• outputs

2n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

1. In reality, could be less

A0

A1

A2

A0

A1

A2

3-to-8
Decoder

0
1
2
3
4
5
6
7

0

1

2

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

EncoderP3.3
Adv. Func. Blocks

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Conc
ep

t

EncoderP3.3
Adv. Func. Blocks

Octal-to-
Binary

Encoder

0
1
2
3
4
5
6
7

0

1

2

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Conc
ep

t

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Priority Encoder

• Additional Validity Output

• Indicating whether the input is valid (contains 1)

• Priority

• Ignores if

V

D<i Di = 1

P3.3
Adv. Func. Blocks

Conc
ep

t

Priority
Encoder

0

1

2

3

0

1

V

Priority EncoderP3.3
Adv. Func. Blocks

Priority
Encoder

0

1

2

3

0

1

V

Conc
ep

t

D3 D2 D1 D0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

Priority EncoderP3.3
Adv. Func. Blocks

Priority
Encoder

0

1

2

3

0

1

V

Conc
ep

t

D3 D2 D1 D0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

V = D3 + D2 + D1 + D0

A1 = D3 + D3D2 = D2 + D3

A0 = D3D2D1 + D3

= D2D1 + D3

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

0
1

I0

I1

S

Y

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

n

n

…

n

0
1

I0

I1

S

Y

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y

Multiplexer

• Multiple -variable input vectors

• Single -variable output vector

• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y

