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Overview
• Focus: Review


• Architecture: Combinational Logic Circuit


• Textbook v4: Ch1-4; v5: Ch1-3


• Core Ideas:


1. Digital Information Representation (Lecture 1)


2. Combinational Logic Circuits (Lecture 2)


3. Combinational Functional Blocks, Arithmetic Blocks (Lecture 3)



Lecture 1: Digital 
Information Representation

Sum
mary

P1 
Digital Rep.

Analog vs Digital circuits; Modern computer architectures; Embedded systems;

Number Systems; Conversions;


Arithmetic Operations; Alphanumeric Codes



Analog vs Digital circuits
• Digital Circuits


• Process digital signals


• Current/Voltage represent discrete 
logical and numeric values

Conc
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P1.1 
Digital Rep.

• Analog Circuits


• Process analog signals


• Current/Voltage vary continuously 
to represent information
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CPU

Von Neumann Architecture
A very rough example
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Von Neumann Architecture
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devices
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Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1: 
X1: 1          (00010001) 
X2: 1          (00100001) 
X3: X1+X2 (01110110)

M1: 1 (00000001) 
  

1+1=2

CPU exe.

M2: 1 (00000001)



CPU

Von Neumann Architecture
A very rough example

Dem
o
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Digital Rep.

1. Von Neumann Architecture

Input/Output 
devices

Control 
Unit

Datapath

Memory

also called arithmetic unit, logical unit, etc.

Calculate 1+1: 
X1: 1          (00010001) 
X2: 1          (00100001) 
X3: X1+X2 (01110110)

M1: 1 (00000001) 
  

1+1=2

M3: 2 (00000010)CPU exe.

M2: 1 (00000001)
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Computer
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Digital Rep.

1. Von Neumann Architecture

• Input/Output devices

• Interaction (Mouth, hands and feet, eyes, etc.)

• CPU + Memory

• Processing information, thinking (Brain, short-term memory)

• Storage?

• Part of I/O devices (Books, long-term memory)

What’s it like compared to a human?
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Embedded Systems

Conc
ep

t

P1.1 
Digital Rep.

• Similar to computers: processes information

• Difference

• Function is usually simpler, and very very specific

• Not programmable



Decimal System

• Numbers as strings of digits, each ranging from 0-9


• The decimal system is of base(radix) 10
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• The decimal system is of base(radix) 10
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Decimal System

• Numbers as strings of digits, each ranging from 0-9


• The decimal system is of base(radix) 10
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iew

P1.2 
Number Systems

7 2 4 0 5.7 2 4 0 5
2 1 0 −1−22 1 0 −1−2



= 7 × 102 + 2 × 101 + 4 × 100 + 0 × 10−1 + 5 × 10−2

Decimal System

• Numbers as strings of digits, each ranging from 0-9


• The decimal system is of base(radix) 10

Rev
iew

P1.2 
Number Systems

7 2 4 0 5.

7 2 4 0 5
2 1 0 −1−2

2 1 0 −1 −2



Numbers of base N

• Default base: 10


• When there are numbers represented in different bases, attach base


• Decimal: 754.05 -> (754.05)10 


• e.g. Base 5: (432.1)5 = ? 
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Number Systems

= 4 × 52 + 3 × 51 + 2 × 50 + 1 × 5−1 = (117.2)10
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Binary Systems in Computers

• Every 8bit is called a Byte

• 1,024 = 210 is called K (Kilo)

• 1,024 x 1,024 = 220 is called M (Mega)

• 1,024 x 1,024 x 1,024 = 240 is called G (Giga)

• Tera, Peta, Exa, Zetta, Yotta 
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• What is the difference between MBps and Mbps?
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Octal and Hexadecimal 
Systems

• Octal: base 8


• digits: 0-7


• Hexadecimal: base 16


• digits: 0-9, A-F (10-15)
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Conversions

• Binary-to- 
Octal: 3bits per octal digit 
Hexadecimal: 4bits per octal digit 
Decimal: use the chart


• Decimal-to- 
Binary: use the chart 
Oct/Hex: do binary first

Conc
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Number Systems

10 9 8 7 6 5 4 3 2 1

1024 512 256 128 64 32 16 8 4 2



Arithmetics

• The same as decimal (mostly)


•

Conc
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Arithmetics

0010
+0011

0101

0101
−0011

0010
Example (binary)



Arithmetics

Dem
o
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Arithmetics

OCTAL Multiplication

00762
× 00054

04672
37100
43772

5 × 2 = 12
5 × 6 + 1 = 37
5 × 7 + 3 = 46

Octal Octal Decimal

. . .

10 = (12)8
31 = (37)8
38 = (46)8

. . .



Signed & Unsigned Integers

• Unsigned 8bit:


• (11111111)2 = 255


• Signed 8bit (only in digital circuits):


•  127 -> '01111111'


• -127 -> '11111111'
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Representations

10001111
First digit: 
• 0 for positive 
• 1 for negative

(binary, 8bit, signed)



Signed & Unsigned Integers

• Unsigned 8bit integer: 0 - 255


• Signed 8bit integer: -128 - 127


• Unsigned 32bit integer: 0 - 4,294,967,295


• Signed 32bit integer: -2,147,483,648 - 2,147,483,647


• Unless otherwise specified, treat as unsigned
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Binary Coded Decimal

• Decimal numbers, each digit represented in 4bit binary, but separately


• 185 = (0001 1000 0101)BCD = (10111001)2 


• Used in places where using decimals directly is more convenient, such as 
digital watches etc.
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ASCII

Dem
o

P1.4 
Representations

• American Standard Code for Information Interchange


• Assign each character with a 8bit binary code (e.g. '0'-'9', 'A'-'Z', 'a'-'z')


• The first bit is always 0



Parity CodeP1.4 
Representations

Dem
o

• For error detection in data communication


• e.g. resulting from packet loss or other forms of interference


• One parity bit for n-bits


• An extra even parity bit: whether the number of 1s is not even


• An extra odd parity: whether the number of 1s is not odd


• Can be placed in any fixed position


• Does it always work?



Parity CodeP1.4 
Representations

Dem
o

Original 7bits with Even parity with Odd parity

1000001 01000001 11000001

1010100 11010100 01010100
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Circuits

• Circuits

• Digital and Analog

• Integrated systems

• Von Neumann computers

• Embedded systems
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Number Systems

• Number systems of base N

• Binary systems

• Octal and Hexadecimal systems

• Arithmetics
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Number Systems in DC

• Bit, Byte, Representation ranges


• Signed and Unsigned Binary Integers


• BCD, ASCII, UTF8


• Parity bit
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Lect 1 Summary



Digital to Analog Conversion
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Digital to Analog Conversion

• Frequency: number of cycles per second
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Digital to Analog Conversion

• Frequency: number of cycles per second

• Sample rate: number of samples per unit time
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Digital to Analog Conversion

• Frequency: number of cycles per second

• Sample rate: number of samples per unit time

• Bitrate: number of bits per second

Rev
iew

P1.5 
Lect 1 Summary



Lecture 2: Combinational 
Logic Circuits

Sum
mary

P2 
Logic Circuits

Logic Gates; Boolean Algebra; Minterm/Maxterm; K-
Map; Some Other Gate Types



First 3 Gates
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First 3 Gates
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Logic Gates

Z = X ⋅ YX
Y

Z = X + YX
Y

Z = XX

AND Gate

OR Gate

NOT Gate

Input Output



Truth Table

Exa
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Truth Table

0 0 0

0 1 1

1 0 1

1 1 1

X
Y Z

ZYX



Truth Table

Exa
mple

P2.1 
Logic Gates

Truth Table

0 0 0

0 1 1

1 0 1

1 1 1

X
Y Z

ZYX = (X ⋅ Y) + (X + Y)
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Basic Identities
• Boolean Algebra solving

• Identify rules applicable to the expression

• Apply rules that can help you simplify the expression

• Simplification: reducing the number of variables and operators in an 
expression without changing it’s truth table values
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Basic Identities
• Boolean Algebra solving

• Identify rules applicable to the expression

• Apply rules that can help you simplify the expression

• Simplification: reducing the number of variables and operators in an 
expression without changing it’s truth table values

• Atomic element: an element that can’t have the number of its variables 
and operators reduced any further

Conc
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Basic Identities

1. 


2. 


3. 


4. 


5.

X + 0 = X

X ⋅ 1 = X

X + 1 = 1

X ⋅ 0 = 0

X + X = X

Conc
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6. 


7. 


8. 


9. 


X ⋅ X = X

X + X = 1

X ⋅ X = 0

X = X



Basic Identities
• Communicative


10. 


11. 


• Associative


12. 


13.

X + Y = Y + X

XY = YX

X + (Y + Z) = (X + Y) + Z

X(YZ) = (XY)Z

Conc
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P2.2 
Boolean Algebra

• Distributive


14. 


15. 


• DeMorgan’s


16. 


17.

X(Y + Z) = XY + XZ

X + (YZ) = (X + Y)(X + Z)

X + Y = X ⋅ Y

X ⋅ Y = X + Y



Basic Identities

A. 


B. 


C.

X + XY = X

XY + XY = X

X + XY = X + Y

Sam
ples

P2.2 
Boolean Algebra

D. 


E. 


F.

X(X + Y) = X

(X + Y)(X + Y) = X

X(X + Y) = XY



Complementation

• : complement (invert) representation for a function , obtained from an 
interchange of 1s to 0s and 0s to 1s for the values of  in the truth table


• Apply DeMorgan’s Rule


16. 


17.

F F
F

X1 + X2 + . . . + Xn = X1 ⋅ X2 ⋅ . . . ⋅ Xn

X1 ⋅ X2 ⋅ . . . ⋅ Xn = X1 + X2 + . . . + Xn

Conc
ep

t

P2.2 
Boolean Algebra



Algebraic Manipulation

Difficulty: Simple


Simplify the following expressions


• 


•

X ⋅ Y + XYZ + XY

X + Y(Z + X + Z)

Exe
rci

se

P2.2 
Boolean Algebra



Algebraic Manipulation

Difficulty: Mid


Simplify the following expressions


• 


•

WX(Z + YZ) + X(W + WYZ)

(AB + AB)(CD + CD) + AC

Exe
rci
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Algebraic Manipulation

Difficulty: Mid


Simplify the following expressions


• 


•

A ⋅ C + ABC + BC

A + B + C ⋅ ABC

Exe
rci

se
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Boolean Algebra



Algebraic Manipulation

Difficulty: Mid


Simplify the following expressions


• 


•

ABC + AC

A ⋅ BD + A ⋅ CD + BD

Exe
rci

se
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Boolean Algebra



Algebraic Manipulation

Difficulty: HARDCORE


Prove the identity of each of the following Boolean equations


• 


• 


•

ABC + BC ⋅ D + BC + CD = B + CD

WY + WYZ + WXZ + WXY = WY + WXZ + XYZ + XYZ

AD + AB + CD + BC = (A + B + C + D)(A + B + C + D)

Exe
rci

se

P2.2 
Boolean Algebra



Standard Forms

• Equivalent expressions can be written in a variety of ways 
Standard forms: typical such ways that incorporates some unique 
characteristics -> simplify the implementation of these designs


• Product terms (AND terms): e.g.  
Literals with inverts connected through only AND operators


• Sum terms (OR terms): e.g.  
Literals with inverts connected through only AND operators

XYZ

X + Y + Z

Conc
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Minterms and Maxterms

• Minterm 
Product term; Contains all variables; Has only one Positive row in the truth 
table

Conc
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XY

X Y

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

m0 = XY m1 = XY m2 = XY m3 = XY
(00)2=0

(01)2=1

(10)2=2

(11)2=3



Minterms and Maxterms

• Maxterm 
Sum term; Contains all variables; Has only one Negative row in the truth 
table
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X Y

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

M3 = X + YM2 = X + YM1 = X + YM0 = X + Y



Minterms and Maxterms

• Maxterm 
Sum term; Contains all variables; Has only one Negative row in the truth 
table
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X Y

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

M3 = X + YM2 = X + YM1 = X + YM0 = X + Y

Mi = mi



Minterms and Maxterms
• e.g. 


• Sum of Minterms


• e.g.  
         


• Product of Maxterm


• e.g.  
          
         

M3 = X + Y + Z = XYZ = m3

F = XYZ + XYZ + XYZ + XYZ = m0 + m2 + m5 + m7
= Σm(0,2,5,7)

F = (X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)
= M0M2M5M7
= ΠM(0,2,5,7)

Conc
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Standard Forms



Two Variable Maps
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than  sum-  of-  products and  product-  of-  sums, the  gate-  input count must be deter-
mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is 
not necessarily unique. It is sometimes possible to !nd two or more expressions that 
satisfy the cost criterion applied. In that case, either solution is satisfactory from the 
cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The 
number of squares in each map is equal to the number of minterms in the corre-
sponding function. In our discussion of minterms, we de!ned a minterm mi to go with 
the row of the truth table with i in binary as the variable values. This use of i to 

(a) (b)

0

1

0 1
Y

X

X Y X Y

X YX Y

(c) (d)

ZX

ZX

0

6 4

13

57

2

X Z

0
2

8 10

1 39
11

(f)(e)

00

01

00 01
YZ

WX

Y

Z

W

11 10

11

10

X

X Z

0 1

2 3 X

Y

0

1

0 1
Y

X

Y

X

Z

0 1 3 2

4 5 7 6

YZ

X

0

00 01 11 10

1

1 3 2

4 5 7 6

8 9 1011

12 13 1415

0

 FIGURE 2-12
Map Structures

M02_MANO0637_05_SE_C02.indd   63 23/01/15   1:47 PM

• Number of squares in each map is equal to the number of minterms for the same number of variables, 
light blue digit above is the index (of minterm)


• Two squares are adjacent if they only differ in one variable


• Binary value inside at each position indicates the truth table value for that term



Three Variable Maps
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• Number of squares in each map is equal to the number of minterms for the same number of variables, 
light blue digit above is the index (of minterm)


• Two squares are adjacent if they only differ in one variable


• Binary value inside at each position indicates the truth table value for that term
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Four Variable Maps
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than  sum-  of-  products and  product-  of-  sums, the  gate-  input count must be deter-
mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is 
not necessarily unique. It is sometimes possible to !nd two or more expressions that 
satisfy the cost criterion applied. In that case, either solution is satisfactory from the 
cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The 
number of squares in each map is equal to the number of minterms in the corre-
sponding function. In our discussion of minterms, we de!ned a minterm mi to go with 
the row of the truth table with i in binary as the variable values. This use of i to 
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• Number of squares in each map is equal to the number of minterms for the same number of variables, 
light blue digit above is the index (of minterm)


• Two squares are adjacent if they only differ in one variable


• Binary value inside at each position indicates the truth table value for that term
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XOR Gate 
Exclusive-OR Z = X ⊕ YX

Y
XOR Truth Table

0 0 0

0 1 1

1 0 1

1 1 0

Z = X ⊕ YYX

• 


• 


•

X ⊕ 0 = X

X ⊕ X = X

X ⊕ Y = X ⊕ Y

• 


• 


•

X ⊕ 1 = X

X ⊕ X = 1

X ⊕ Y = X ⊕ Y
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XOR Gate 
Exclusive-OR Z = X ⊕ YX

Y
XOR Truth Table

0 0 0

0 1 1

1 0 1

1 1 0

Z = X ⊕ YYX= XY + XY

• 


• 


•

X ⊕ 0 = X

X ⊕ X = X

X ⊕ Y = X ⊕ Y

• 


• 


•

X ⊕ 1 = X

X ⊕ X = 1

X ⊕ Y = X ⊕ Y
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•

X ⊕ 0 = X

X ⊕ X = X

X ⊕ Y = X ⊕ Y

• 


• 


•

X ⊕ 1 = X

X ⊕ X = 1

X ⊕ Y = X ⊕ Y
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NAND Gate Z = X ⋅ Y
X
Y

Z = XXNOT Gate

NOR Gate Z = X + Y
X
Y

XNOR Gate Z = X ⊕ YX
Y



Boolean Algebra
I. AND, OR, NOT Operators and Gates


• Simple digital circuit implementation


• Algebraic manipulation using Binary Identities


II. Standard Forms


• Minterm & Maxterm


• Sum of Products & Product of Sums


III. Optimisation Using K-Map (For 2,3,4 Variables)


IV. XOR, NAND, NOR, XNOR

Rev
iew
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Lect 2 Summary



Systematic Design Procedures
1. Specification: Write a specification for the circuit


2. Formulation: Derive relationship between inputs and outputs of the system 
e.g. using truth table or Boolean expressions


3. Optimisation: Apply optimisation, minimise the number of logic gates and 
literals required


4. Technology Mapping: Transform design to new diagram using available 
implementation technology


5. Verification: Verify the correctness of the final design in meeting the 
specifications
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Hierarchical Design

• "divide-and-conquer"

• Circuit is broken up into individual functional pieces (blocks)

• Each block has explicitly defined Interface (I/O) and Behaviour

• A single block can be reused multiple times to simplify design process

• If a single block is too complex, it can be further divided into smaller 
blocks, to allow for easier designs
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Value-Fixing, Transferring, and 
Inverting
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① Value-Fixing: giving a constant value to a wire


• ; ;


② Transferring: giving a variable (wire) value from another variable (wire)


• ;


③ Inverting: inverting the value of a variable


•

F = 0 F = 1

F = X

F = X



Vector Denotation
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④ Multiple-bit Function 

• Functions we’ve seen so far has only one-bit output: 0/1


• Certain functions may have -bit output


• , each  is a one-bit function


• Curtain Motor Control Circuit: 

n

F(n − 1 : 0) = (Fn−1, Fn−2, . . . , F0) Fi

F = (FMotor1
, FMotor2

, FLight)
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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least signi!cant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 
of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 
as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 
This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-
mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 
speci!es that the switches that control the normal lights be programmable. There are 
to be three different modes of operation for the two switches. Switch P is on the po-
dium in the front of the hall and switch R is adjacent to a door at the rear of the 
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F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.
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mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 
multiple, related wires by using a single line of greater thickness with a slash, across 
the line. An integer giving the number of wires represented accompanies the slash as 
shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-
ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 
process of transferring, we may wish to use only a subset of the elements in F—for 
example, F2 and F1. The notation for the bits of F can be used for this purpose, as 
shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 
F3, F1, F0 at a destination. Note that since F3, F1, and F0 are not all together, we cannot 
use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-
nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-
tion used for vectors and subvectors varies among the schematic drawing tools or 
HDL tools available. Figure 3-8 illustrates just one approach. For a speci!c tool, the 
documentation should be consulted.

Value !xing, transferring, and inverting have a variety of applications in logic 
design. Value !xing involves replacing one or more variables with constant values 
1 and 0. Value !xing may be permanent or temporary. In permanent value !xing, 
the value can never be changed. In temporary value !xing, the values can be 
changed, often by mechanisms somewhat different from those employed in ordi-
nary logical operation. A major application of !xed and temporary value !xing is 
in programmable logic devices. Any logic function that is within the capacity of the 
programmable device can be implemented by !xing a set of values, as illustrated in 
the next example.
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each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by 
a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders, 
one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm 
function using a single AND gate with more inputs. Unfortunately, as decoders 
become larger, this approach gives a high gate-input cost. In this section, we give 
a  procedure that uses design hierarchy and collections of AND gates to con-
struct any decoder with n inputs and 2n outputs. The resulting decoder has the 
same or a lower gate-input cost than the one constructed by simply enlarging each 
AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder 
and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms. 
Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line 
decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting 
structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-
ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND 

A
D0 ! A

D0

D1 ! A

D1

0 1 0
1 0 1

(a) (b)

A

 FIGURE 3-12
A 1–to–2-Line Decoder

A1

0
0
1
1

A0

0
1
0
1

D0

1
0
0
0

D1

0
1
0
0

D2

0
0
1
0

D3

0
0
0
1

(a)

(b)

A

D A1A0

A1A0

A1A0

A1A0D

D

D

1

A0

 FIGURE 3-13
A 2–to–4-Line Decoder

M03_MANO0637_05_SE_C03.indd   129 23/01/15   1:51 PM

3-to-8 
Decoder

0
1
2
3
4
5
6
7

0

1

2



Encoder

• Inverse operation of a decoder


•  inputs, only one is giving positive 
input1


•  outputs

2n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

1. In reality, could be less

A0

A1

A2

A0

A1

A2

3-to-8 
Decoder

0
1
2
3
4
5
6
7

0

1

2

Octal-to-
Binary 

Encoder

0
1
2
3
4
5
6
7

0

1

2



Encoder

• Inverse operation of a decoder


•  inputs, only one is giving positive 
input1


•  outputs

2n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

1. In reality, could be less

A0

A1

A2

A0

A1

A2

3-to-8 
Decoder

0
1
2
3
4
5
6
7

0

1

2

Octal-to-
Binary 

Encoder

0
1
2
3
4
5
6
7

0

1

2



EncoderP3.3 
Adv. Func. Blocks

Octal-to-
Binary 

Encoder

0
1
2
3
4
5
6
7

0

1

2

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Conc
ep

t



EncoderP3.3 
Adv. Func. Blocks

Octal-to-
Binary 

Encoder

0
1
2
3
4
5
6
7

0

1

2

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Conc
ep

t

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7



Priority Encoder

• Additional Validity Output 


• Indicating whether the input is valid (contains 1)


• Priority


• Ignores  if 

V

D<i Di = 1

P3.3 
Adv. Func. Blocks

Conc
ep

t

Priority 
Encoder

0

1

2

3

0

1

V



Priority EncoderP3.3 
Adv. Func. Blocks

Priority 
Encoder

0

1

2

3

0

1

V

Conc
ep

t

D3 D2 D1 D0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1



Priority EncoderP3.3 
Adv. Func. Blocks

Priority 
Encoder

0

1

2

3

0

1

V

Conc
ep

t

D3 D2 D1 D0 A1 A0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

V = D3 + D2 + D1 + D0

A1 = D3 + D3D2 = D2 + D3

A0 = D3D2D1 + D3

= D2D1 + D3



Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

0
1

I0

I1

S

Y



Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

n

n

…

n

0
1

I0

I1

S

Y



Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y



Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y



Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y



Multiplexer

• Multiple -variable input vectors


• Single -variable output vector


• Switches: which input vectors to output

n

n

Conc
ep

t

P3.3 
Adv. Func. Blocks

n

n

…

n

n

0
1

I0

I1

S

Y


