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Overview

Focus: Review

Architecture: Combinational Logic Circuit
Textbook v4: Ch1-4; v5: Ch1-3

Core ldeas:

1. Digital Information Representation (Lecture 1)
2. Combinational Logic Circuits (Lecture 2)

3. Combinational Functional Blocks, Arithmetic Blocks (Lecture 3)



P1
Digital Rep.

Lecture 1: Digital
Information Representation

Analog vs Digital circuits; Modern computer architectures; Embedded systems;
Number Systems; Conversions;
Arithmetic Operations; Alphanumeric Codes



Analog vs Digital circuits

e Digital Circuits e Analog Circuits
e Process digital signals e Process analog signals

e Current/Voltage represent discrete e Current/Voltage vary continuously

logical and numeric values to represent information
1 1
0.5 0.75
0 0.5
-0.5 0.25
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Computer

What’s it like compared to a human?

e |nput/Output devices

e |nteraction (Mouth, hands and feet, eyes, etc.)
e CPU + Memory

e Processing information, thinking (Brain, short-term memory)
e Storage?

e Part of /0 devices (Books, long-term memory)

1. Von Neumann Architecture
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Embedded Systems

e Similar to computers: processes information
e Difference
e Function is usually simpler, and very very specific

e Not programmable
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Decimal System

7205
—7x10°+2%x 10 +4x10°+0x 107" +5%x 102

e Numbers as strings of digits, each ranging from 0-9

e The decimal system is of base(radix) 10



Numbers of base N

e Default base: 10
e \WWhen there are numbers represented in different bases, attach base
e Decimal: 754.05 -> (754.05)10

e e.g. Base 5:(432.1)s = 7

=4 x5 +3x5'+2x5%°4+1 x5 =(117.2),,
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[ Binary Systems in Computers

e Every 8bit Is called a Byte

e 1,024 = 210 is called K (Kilo)

e 1,024 x 1,024 = 220 js called M (Mega)

e 1,024 x 1,024 x 1,024 = 240 is called G (Giga)

e Jera, Peta, Exa, Zetta, Yotta
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[ Binary Systems in Computers

e——y
7
e What is the difference between MBps and Mbps? ' ‘

NETWORK
BANDWIDTH

* MegaBytes per second vs MegaBits per second [

e 8x difference! ‘

0,1 1




Octal and Hexadecimal
Systems

P1.2
Number Systems

e (QOctal: base 8
e digits: 0-7
e Hexadecimal: base 16

e digits: 0-9, A-F (10-15)




Conversions

10 9 8 7 6 5
1024 512 256 128 64 32 16 8 4 2
e Binary-to-

Octal: 3bits per octal digit
Hexadecimal: 4bits per octal digit
Decimal: use the chart

e Decimal-to-
Binary: use the chart
Oct/Hex: do binary first




Arithmetics

0010 0101
e The same as decimal (mostly) + OO 1 1 o OO 1 1
0101 0010

Example (binary)



X

Octal
762

54

4672
3710

43772

Arithmetics
O CTA L Multiplication

Octal
X2 =12

X6+ 1 =37
X7+ 3 =46

Decimal

: 10 = (12),

31 = (37).

38 = (46)



[ Signed & Unsigned Integers

e Unsigned 8Dbit;
First digit:
e O for positive

e (11111111)2 =235 e 1 for negative

e Signed 8bit (only in digital circuits): OOOI 1 1 1

e 127 ->"01111111" (binary, 8bit, signed)

¢ =127 -> 11111111




[ Signed & Unsigned Integers

e Unsigned 8bit integer: 0 - 255
e Signed 8bit integer: -128 - 127
e Unsigned 32bit integer: 0 - 4,294,967,295
e Signed 32bit integer: -2,147,483,648 - 2,147,483,647

e Unless otherwise specified, treat as unsigned




Binary Coded Decimal

e Decimal numbers, each digit represented in 4bit binary, but separately
e 185 =(0001 1000 0101)gcp = (10111001)2

e Used Iin places where using decimals directly is more convenient, such as
digital watches etc.




P1.4
Representations

e American Standard Code for Information Interchange
e Assign each character with a 8bit binary code (e.g. '0'-'9', 'A'-'Z', 'a'-'Z')

e The first bit is always O




Parity Code

* [or error detection in data communication
e e.g. resulting from packet loss or other forms of interference
e One parity bit for n-bits
e An extra even parity bit: whether the number of 1s is not even
 An extra odd parity: whether the number of 1s is nhot odd

e Can be placed in any fixed position

e Does it always work"?




Parity Code

Original 7bits with Even parity with Odd parity

1000001 01000001 11000001

1010100 11010100 01010100
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e Circuits
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Circuits

e Circuits
e Digital and Analog
e |ntegrated systems
e \on Neumann computers

e Embedded systems
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P1.5
Lect 1 Summary

Number Systems

e Number systems of base N
e Binary systems
e (QOctal and Hexadecimal systems

o Arithmetics



Number Systems in DC

e Bit, Byte, Representation ranges
e Signed and Unsigned Binary Integers
e BCD, ASCII, UTF8

e Parity bit



Digital to Analog Conversion
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I Digital to Analog Conversion

e Frequency: number of cycles per second
e Sample rate: number of samples per unit time

e Bitrate: number of bits per second



P2
Logic Circuits

Lecture 2: Combinational
Logic Circuits

Logic Gates; Boolean Algebra; Minterm/Maxterm; K-
Map; Some Other Gate Types



First 3 Gates

AND Gate A _D—Z =X-Y
y —

OR Gate X®Z=X+Y
Y

NOT Gate X 4[>O—Z =X




First 3 Gates

AND Gate
OR Gate

NOT Gate




First 3 Gates

AND Gate
OR Gate

NOT Gate




Truth Table

X
Y /.
Truth Table




Truth Table

X
Y 7/
Truth Table
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Basic Identities

e Boolean Algebra solving
* |dentify rules applicable to the expression
 Apply rules that can help you simplify the expression

o Simplification: reducing the number of variables and operators in an
expression without changing it’s truth table values

e Atomic element: an element that can’t have the number of its variables
and operators reduced any further



Basic Identities

1. X+0=X 6. X- X=X
2. X-1=X 7. X+X=1
3. X+1=1 8. X-X=0
4. X-0=0 9. X=X

5. X+ X=X




Basic Identities

e Communicative e Distributive
10.X+Y=Y+X 14.X(Y+2)=XY+XZ
11. XY =YX 5. X+YZ2)=X+Y)X+Z)
e Associative e DeMorgan’s
12X+Y+2)=X+Y)+Z 16.X+Y=X-Y

13.X(YZ) = (XY)Z 17.X-Y=X+7Y




Basic Identities

A X+XY=X D. XX+Y)=X
B. XY+XY=X E. X+ X+Y)=X

C. X+XY=X+Y F X(X+Y)=XY




Complementation

e [ complement (invert) representation for a function £, obtained from an
interchange of 1s to Os and Os to 1s for the values of I in the truth table

e Apply DeMorgan’s Rule

17.X, - X% ... X =X+ X, +...+

i




Algebraic Manipulation

Difficulty: Simple
Simplify the following expressions

e X - Y+ XYZ+ XY

e X+ Y(Z+X+2)




Algebraic Manipulation

Difficulty: Mid
Simplify the following expressions

e WX(Z+YZ)+ X(W+ WYZ)

e (AB+AB)(CD+ CD)+ AC




Algebraic Manipulation

Difficulty: Mid

Simplify the following expressions

e A-C+ ABC + BC

e A+ B+ C-ABC




Algebraic Manipulation

Difficulty: Mid
Simplify the following expressions

e ABC+ AC

e A-BD+A-CD+ BD




Algebraic Manipulation

Difficulty: HARDCORE

Prove the identity of each of the following Boolean equations

e ABC+BC-D+BC+CD =B+ CD

e WY+ WYZ+ WXZ+ WXY =WY+WXZ+XYZ+XYZ

e AD+AB+CD+BC=A+B+C+D)A+B+ C+D)




Standard Forms

e Equivalent expressions can be written in a variety of ways
Standard forms: typical such ways that incorporates some unique
characteristics -> simplify the implementation of these designs

e Product terms (AND terms): e.g. XYZ
Literals with inverts connected through only AND operators

e Sum terms (ORterms):e.g. X+ Y+ Z
Literals with inverts connected through only AND operators




Minterms and Maxterms

e Minterm
Product term; Contains all variables; Has only one Positive row in the truth
table
(00)2=0 0 1 0 0 0
(01)2=1 0 0 1 0 0
(10)2=2 1 0 0 1 0
(11)2=3 1 0 0 0 1




Minterms and Maxterms

e Maxterm

Sum term; Contains all variables; Has only one Negative row in the truth
table

0
1 0 1 1
1 1 0

X
0
0
L
1 1 1 1




Minterms and Maxterms

e Maxterm

Sum term; Contains all variables; Has only one Negative row in the truth
table

0

X
0
0 1 0 1 1
1
1




Minterms and Maxterms

ceg. M;=X+Y+7Z=XYZ=rmn;

e Sum of Minterms

o 9. F =XYZ+ XYZ + XYZ + XYZ = my + m, + ms + m-
= 2m(0,2,5,7)

e Product of Maxterm

e eg F=X+Y+2)O)X+Y+2)X+Y+2)X+Y+2)
— MOM2M5M7
= IIM(0,2,5,7)




Two Variable Maps
X

0 1
o
nEng

* Number of squares in each map is equal to the number of minterms for the same number of variables,
light blue digit above is the index (of minterm)

e [wo squares are adjacent if they only differ in one variable

e Binary value inside at each position indicates the truth table value for that term




Three Variable Maps

* Number of squares in each map is equal to the number of minterms for the same number of variables,
light blue digit above is the index (of minterm)

e Two squares are adjacent if they only differ in one variable

e Binary value inside at each position indicates the truth table value for that term




Four Variable Maps

YZ . .
00, 01 11 10
!I
n

e
XZ L

* Number of squares in each map is equal to the number of minterms for the same number of variables,
light blue digit above is the index (of minterm)

WX XZ

00

01

11

10

e Two squares are adjacent if they only differ in one variable

e Binary value inside at each position indicates the truth table value for that term




K Map Optimisation
X{Z 00 o0l 11 10 da
| jllE <
X aﬁ
F(X,Y.Z) = m(0,1,2,3.4.5) l




K Map Optimisation

X{Zoo 01 11 10' h
0 j..E *Qb e Step 1: Enter the values
P
F(X,Y,Z) = £m(0,1,2,3,4,5)




K Map Optimisation

NG - -
X 00 01 11 10
X7 I e Step 1: Enter the value

X
F(X.Y,Z) = ¥m(0,1,2,3,4,5) !
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e Step 2: Identify the set of largest

rectangles in which all values
are 1, covering all 1s
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e Step 1: Enter the values

e Step 2: Identify the set of largest
rectangles in which all values
are 1, covering all 1s

e Step 3: Read off the selected
rectangles. If rectangle has odd
length edges (excluding 1), split

F(X.Y,Z) = ¥m(0,1,2,3,4,5)




e Step 1: Enter the values

e Step 2: Identify the set of largest
rectangles in which all values
are 1, covering all 1s

e Step 3: Read off the selected
rectangles. If rectangle has odd
—X+Y length edges (excluding 1), split

F(X.Y,Z) = ¥m(0,1,2,3,4,5)




P2.5
XOR Gate
XOR Gate X B XOR Truth Table
Exclusive-OR Y @‘Z =X0r

e XP0=X e XPl=X

e XPX=X e XPX=1

e XPY=XPY e XPY=XPY




P2.5
Other Gates

XOR Gate
Exclusive-OR

e Xp0=X

e XPX=X

e XPY=XPY e XPY=XPY



P2.5
Other Gates

e X6P0=X e XPl=X

e XP X=X e XPpX=1

e XPY=XPY e XPY=XPY




P2.5
Other Gates

NOT Gate

NAND Gate

NOR Gate

XNOR Gate

XY

=X+Y

15

~

/=XY




Boolean Algebra

. AND, OR, NOT Operators and Gates

e Simple digital circuit implementation

* Algebraic manipulation using Binary ldentities
Il. Standard Forms

* Minterm & Maxterm

e Sum of Products & Product of Sums
lll. Optimisation Using K-Map (For 2,3,4 Variables)

V. XOR, NAND, NOR, XNOR




% Systematic Design Procedures

1. Specification: Write a specification for the circuit

2. Formulation: Derive relationship between inputs and outputs of the system
e.g. using truth table or Boolean expressions

3. Optimisation: Apply optimisation, minimise the number of logic gates and
literals required

4. Technology Mapping: Transform design to new diagram using available
iImplementation technology

5. Verification: Verify the correctness of the final design in meeting the
specifications
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Hierarchical Design

e "divide-and-conquer"
e Circuit is broken up into individual functional pieces (blocks)
e Each block has explicitly defined Interface (I/0O) and Behaviour
* A single block can be reused multiple times to simplify design process

* |f a single block is too complex, it can be further divided into smaller
blocks, to allow for easier designs




Value-Fixing, Transferring, and
ementary Func. I nverti n g

(D Value-Fixing: giving a constant value to a wire
e F=0; F = 1;

(2 Transferring: giving a variable (wire) value from another variable (wire)
o ['= X

@ Inverting: inverting the value of a variable

o =X




Vector Denotation

@ Multiple-bit Function

e Functions we’ve seen so far has only one-bit output: 0/1

e Certain functions may have n-bit output

e F(n—1:0)=(F

o1, b ., Iy), each F; is a one-bit function

e Curtain Motor Control Circuit: ' = (Fy1ot0r,» £ Motor,» F'Light)




Taking part of the Vector

2
4 21 F(2:1)

Output: (5, F)

\ 4 3,1:0 /A\—g’ F(3), F(1:0)
I3

4 Multiple-bit Function
Output: (Fs, Fy, Fy)




Taking part of the Vector [
2

; 4 21 /%F(Zzl)
F

Output: (5, F)

\ 4 3,1:0 /A\—g’ F(3), F(1:0)
I3

Output: (Fs, Fy, F,)

4 Multiple-bit Function




Taking part of the Vector [
2

; 4 21 /%F(Zzl)
F

Output: (F,, ;)
Indices 3
\ 4 3,1:0 /A\—F(3),F(1:())
F

Output: (Fs, Fy, F,)

4 Multiple-bit Function




Enabler

B Enabler

e Transferring function, but with an additional EN signal acting as switch




P3.2
Elementary Func.

B Enabler

Enabler

e Transferring function, but with an additional EN signal acting as switch

X
EN EN
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Encoder

A A

0 0

0

10

1 1

0 0

01 “Binary 1
1 0 Encoder




Encoder

A1 Ao
O 1 A1=D2+D3+D6+D7
A2 =D4+D5+D6+D7
1 0
1 1
0 0
Octal-to-
0 1 Binary 1
1 0 Encoder




Priority Encoder

e Additional Validity Output V

e |ndicating whether the input is valid (contains 1)

Priority
7 Encoder

e Priority

3
e Ignores D_;if D, =1




Priority Encoder

Priority
7 Encoder




Priority Encoder

V=D;+D,+ D, + D,
A, =D, + D;D, = D, + D;,
A, = D;D,D, + D,

= D,D, + D;

Priority
7 Encoder
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