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Overview
• Focus: Arithmetic Functional Blocks


• Architecture: Combinatory Logical Circuits


• Textbook v4: Ch4 4.3, 4.7; v5: Ch2 2.9, Ch3 3.10


• Core Ideas:


1. Subtraction I


2. VHDL
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The half adder can be implemented with one exclusive-OR gate and one AND 
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input 
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted 
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary 
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value 
of the bit of the sum, and the binary variable C gives the output carry. The truth table 
of the full adder is listed in Table 3-12. The values for the outputs are determined 
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all 
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are 
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41. 
The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates. 
However, the map for output S is recognized as an odd function, as discussed in 
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 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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n-bit Full Adder
• Ripple Carry Adder
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Unsigned Binary Subtraction

• We learned to perform subtraction, by subtracting the smaller number from 
the greater number
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What is HDL
• Designing complex circuits using logic circuit diagrams is inefficient


• Hardware Description Language


• Like programming language, describes hardware structures and behaviours


• More efficient


• Common languages


• Verilog


• VHDL
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Creating a AND1INV model
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1. Go to the File menu, select New command. Select Model Wizard and click OK



Creating a AND1INV model
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2. Source: Create a new, empty model, Destination: Create a new symbol with the specified model attached. Click Next



Creating a AND1INV model
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2. Source: Create…, Destination: Open the… . Click Next . Select VHDL, Enter name AND1INV.



Creating a AND1INV model
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3. Type the Name and select the Function accordingly, then press Add Single Bit, click Finish to create the model file.

• This is where you define 
all inputs and outputs


• Input: POS


• Input: NEG


• Output: Out1
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3. Type the Name and select the Function accordingly, then press Add Single Bit, click Finish to create the model file.

• This is where you define 
all inputs and outputs


• Input: POS


• Input: NEG


• Output: Out1



Creating a AND1INV model

Tu
toria

l

P2 
VHDL

4. The programme will ask you for Pin Location assignment. Just click Next.
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Creating a AND1INV model
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Port definition here

Internal description 
where we implement
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5. Type: OUT1 <= POS AND NOT NEG AFTER 1NS; This is the Boolean description of the OUT1 port

OUT1 <= POS AND NOT NEG AFTER 1NS;

Transferring Boolean 
Operators

Things do not happen 
simultaneously
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6. VHDL -> Compile. A message should say Compile Completed - 0 errors

OUT1 <= POS AND NOT NEG AFTER 1NS;
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Run Simulation

Tu
toria

l

P2 
VHDL

6. VHDL -> Run Simulation. The text should turn grey (not editable). Click Run Button to start simulator, click I/O panel Page button

RunI/O Page



Run Simulation
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7. Play with the buttons in the I/O panel

value fixing: 0

decrease value (1 -> 0)increase value (0 -> 1)



Run Simulation

Tu
toria

l

P2 
VHDL

8. Changes are reflected in the Timing Diagram. Use Zoom panel to Zoom In and Out

Zoom-in

Zoom-out

Reset



Exe1: 1-bit Half Adder
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• Create a new component in VHDL called 
HalfAdder1


• Input: X, Y


• Output: S, C


• Don’t use AFTER
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The half adder can be implemented with one exclusive-OR gate and one AND 
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input 
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted 
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary 
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value 
of the bit of the sum, and the binary variable C gives the output carry. The truth table 
of the full adder is listed in Table 3-12. The values for the outputs are determined 
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all 
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are 
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41. 
The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates. 
However, the map for output S is recognized as an odd function, as discussed in 
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 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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architecture arch1 of HalfAdder is 

begin 

    S <= X XOR Y; 

    C <= X AND Y; 

end arch1;
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