
19.02.20 08:50CSCI 150
Introduction to Digital and Computer

System Design
Lecture 3: Combinational Logic Design VI

Jetic Gū

2020 Winter Semester (S1)

Overview
• Focus: Arithmetic Functional Blocks

• Architecture: Combinatory Logical Circuits

• Textbook v4: Ch4 4.3, 4.7; v5: Ch2 2.9, Ch3 3.10

• Core Ideas:

1. Subtraction I

2. VHDL

Review

Sum
mary

P0
Binary Adder

Unsigned Binary Adder

1-bit Half Adder

• Half adder 
input � , �  
output � , �

X Y
S C

Rev
iew

P0
Binary Adder

X
+Y

Augend

Carries

Addend

Sum S

C

+

Input
Output

1-bit Half Adder

Rev
iew

P0
Binary Adder

X
+Y

Augend

Carries

Addend

Sum S

C

+

Input
Output

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd 158 23/01/15 1:51 PM

1-bit Full Adder

• Full adder 
input � , � , � ; 
output � , �

X Y Z
S C

Rev
iew

P0
Binary Adder

Z
X

+Y
Augend

Carries

Addend

Sum S

C

+

Input
OutputX

Y
Z

1-Bit Binary
Adder

S

C

S
C

1-bit Full Adder

• Full adder 
input � , � , � ; 
output � , �

X Y Z
S C

Rev
iew

P0
Binary Adder

• Half adder1 
input � , �  
output � , �

X Y
S′� C′�

• Half adder2 
input � , �  
output � , �

S′� Z
S C′�′�

C = C′� + C′�′�

X
Y

Z

1-Bit Half
Adder

S

C C

1-Bit Half
Adder

S

C

S

n-bit Full Adder

Rev
iew

P0
Binary Adder

A0 B0 0

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S0

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S1

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S2

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S3

A1 B1 A2 B2 A3 B3

…

n-bit Full Adder
• Ripple Carry Adder

Rev
iew

P0
Binary Adder

A0 B0 0

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S0

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S1

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S2

1-
Bi

t B
in

ar
y

Ad
de

r

S C

S3

A1 B1 A2 B2 A3 B3

…

Unsigned Binary
Subtraction I

Sum
mary

P1
Subtraction

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

0

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Input
Output

0
10110
10011
00011

0

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Rev
iew

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Input
Output

0
10110
10011
00011

This method works when the Minuend is greater than the Subtrahend!

0

Unsigned Binary Subtraction

• We learned to perform subtraction, by subtracting the smaller number from
the greater number

Rev
iew

P1
Subtraction

X > Y, F = X − Y

Unsigned Binary Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Conc
ep

t

P1
Subtraction

00110
10110

−10011
00011

Minuend

Borrows

Subtrahend

Difference

Input
Output

0
10110
10011
00011

0

Unsigned 1-bit Binary
Subtraction

• Input: Minuend � and Subtrahend �  
 Previous borrow �

• Output: Last borrow � , difference �

X Y
Z

B D

Conc
ep

t

P1
Subtraction

0
0

−1
1

Minuend �X

Borrows

Subtrahend �Y

Difference �D

Input
Output

0
0
1
1

1
B Z

Unsigned 1-bit Binary
Subtraction

• Input: Minuend � and Subtrahend �  
 Previous borrow �

• Output: Last borrow � , difference �

X Y
Z

B D

Conc
ep

t

P1
Subtraction

0
0

−1
1

Minuend �X

Borrows

Subtrahend �Y

Difference �D

Input
Output

0
0
1
1

1
B Z

X Y Z B D

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Unsigned 1-bit Binary
Subtraction

• Implementation using 3-to-8 Decoder

• �

• �

B = Σm(1,2,3,7)

D = Σm(1,2,4,7)

Conc
ep

t

P1
Subtraction

X
Y
Z

1-Bit Binary
Subtractor

B

D

B
D

Unsigned Binary 
Subtraction

• Input: Minuend and Subtrahend 
 Previous borrow

• Output: Last borrow, difference

Conc
ep

t

P1
Subtraction

00110
10110

−10011
00011

Input
Output

0
10110
10011
00011

0
Minuend �X

Borrows

Subtrahend �Y

Difference �D

B Z

Technology

• 1 bit Unsigned Subtractor

Unsigned Binary 
Subtraction

Conc
ep

t

P1
Subtraction

00110
10110

−10011
00011

Input
Output

0
10110
10011
00011

0
Minuend �X0:n−1

Borrows

Subtrahend �Y0:n−1

Difference �D0:n−1

B Z

Technology

• 1 bit Unsigned Subtractor

X0
Y0
Z

1-Bit Binary
Subtractor

B

D D0

X1
Y1

1-Bit Binary
Subtractor

B

D D1

…

Hardware Description
Language

Sum
mary

P2
VHDL

VHDL (VHSIC-HDL): Very High Speed Integrated
Circuit Hardware Description Language

What is HDL
• Designing complex circuits using logic circuit diagrams is inefficient

• Hardware Description Language

• Like programming language, describes hardware structures and behaviours

• More efficient

• Common languages

• Verilog

• VHDL

Conc
ep

t

P2
VHDL

Creating a AND1INV model

Tu
toria

l

P2
VHDL

Equivalent

Creating a AND1INV model

Tu
toria

l

P2
VHDL

1. Go to the File menu, select New command. Select Model Wizard and click OK

Creating a AND1INV model

Tu
toria

l

P2
VHDL

2. Source: Create a new, empty model, Destination: Create a new symbol with the specified model attached. Click Next

Creating a AND1INV model

Tu
toria

l

P2
VHDL

2. Source: Create…, Destination: Open the… . Click Next . Select VHDL, Enter name AND1INV.

Creating a AND1INV model

Tu
toria

l

P2
VHDL

3. Type the Name and select the Function accordingly, then press Add Single Bit, click Finish to create the model file.

• This is where you define
all inputs and outputs

• Input: POS

• Input: NEG

• Output: Out1

Creating a AND1INV model

Tu
toria

l

P2
VHDL

3. Type the Name and select the Function accordingly, then press Add Single Bit, click Finish to create the model file.

• This is where you define
all inputs and outputs

• Input: POS

• Input: NEG

• Output: Out1

Creating a AND1INV model

Tu
toria

l

P2
VHDL

4. The programme will ask you for Pin Location assignment. Just click Next.

Creating a AND1INV model

Tu
toria

l

P2
VHDL

Creating a AND1INV model

Tu
toria

l

P2
VHDL

Port definition here

Creating a AND1INV model

Tu
toria

l

P2
VHDL

Port definition here

Internal description
where we implement

Creating a AND1INV model

Tu
toria

l

P2
VHDL

5. Type: OUT1 <= POS AND NOT NEG AFTER 1NS; This is the Boolean description of the OUT1 port

OUT1 <= POS AND NOT NEG AFTER 1NS;

Transferring Boolean 
Operators

Things do not happen 
simultaneously

Creating a AND1INV model

Tu
toria

l

P2
VHDL

5. Type: OUT1 <= POS AND NOT NEG AFTER 1NS; This is the Boolean description of the OUT1 port

OUT1 <= POS AND NOT NEG AFTER 1NS;

Transferring Boolean 
Operators

Things do not happen 
simultaneously

Creating a AND1INV model

Tu
toria

l

P2
VHDL

6. VHDL -> Compile. A message should say Compile Completed - 0 errors

OUT1 <= POS AND NOT NEG AFTER 1NS;

Transferring Boolean 
Operators

Things do not happen 
simultaneously

Creating a AND1INV model

Tu
toria

l

P2
VHDL

6. VHDL -> Compile. A message should say Compile Completed - 0 errors

OUT1 <= POS AND NOT NEG AFTER 1NS;

Transferring Boolean 
Operators

Things do not happen 
simultaneously

Run Simulation

Tu
toria

l

P2
VHDL

6. VHDL -> Run Simulation. The text should turn grey (not editable). Click Run Button to start simulator, click I/O panel Page button

RunI/O Page

Run Simulation

Tu
toria

l

P2
VHDL

7. Play with the buttons in the I/O panel

value fixing: 0

decrease value (1 -> 0)increase value (0 -> 1)

Run Simulation

Tu
toria

l

P2
VHDL

8. Changes are reflected in the Timing Diagram. Use Zoom panel to Zoom In and Out

Zoom-in

Zoom-out

Reset

Exe1: 1-bit Half Adder

Prac
tic

e

P2
VHDL

• Create a new component in VHDL called
HalfAdder1

• Input: X, Y

• Output: S, C

• Don’t use AFTER

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd 158 23/01/15 1:51 PM

Exe1: 1-bit Half Adder

Prac
tic

e

P2
VHDL

architecture arch1 of HalfAdder is

begin

 S <= X XOR Y;

 C <= X AND Y;

end arch1;

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND
gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input
bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted
by X and Y, represent the two significant bits to be added. The third input, Z, rep-
resents the carry from the previous lower significant position. Two outputs are neces-
sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary
2 and 3 need two digits for their representation. Again, the two outputs are designat-
ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value
of the bit of the sum, and the binary variable C gives the output carry. The truth table
of the full adder is listed in Table 3-12. The values for the outputs are determined
from the arithmetic sum of the three input bits. When all the input bits are 0, the out-
puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all
three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are
equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.
The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.
However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

M03_MANO0637_05_SE_C03.indd 158 23/01/15 1:51 PM

