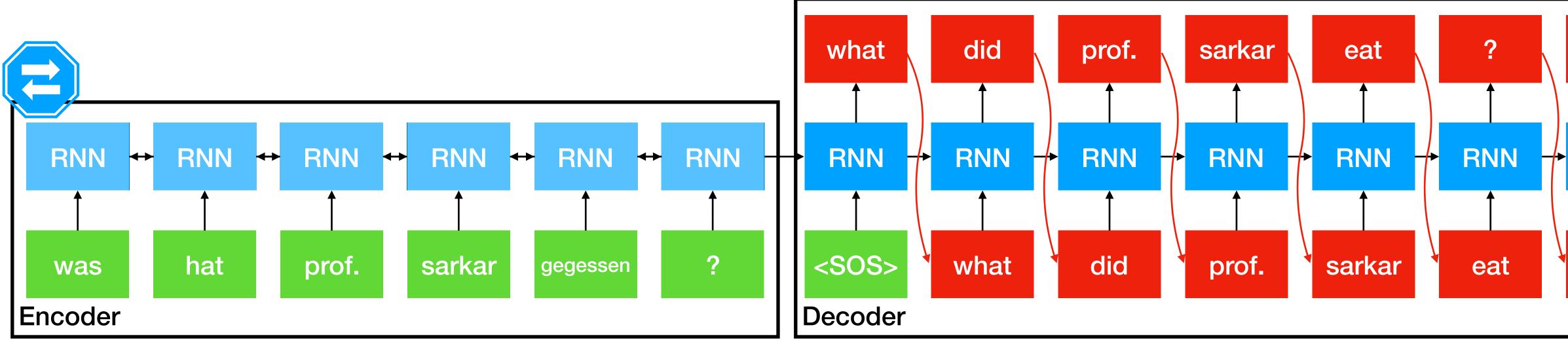
Neural Machine Translation² CMPT 413/825, Fall 2019

12 Nov. 2019



Overview

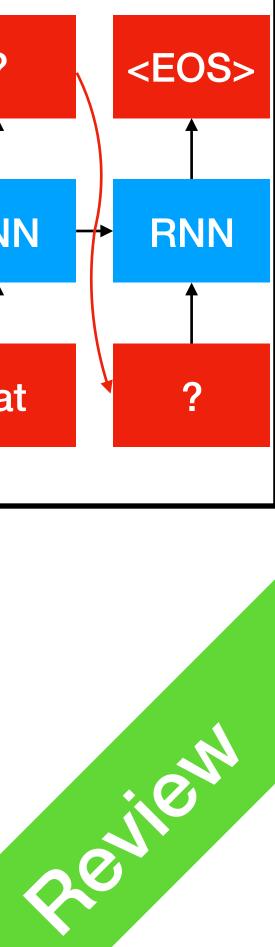
- Focus: Neural Machine Translation
- Architecture: Encoder-Decoder Neural Network
- Main Story:
 - Extension to Seq2Seq: Copy Mechanism
 - Extension to Seq2Seq: Ensemble
 - Extension to Seq2Seq: BeamSearch
 - [Extra] Beyond Seq2Seq: Attention is all you need
 - [Extra] Beyond NMT



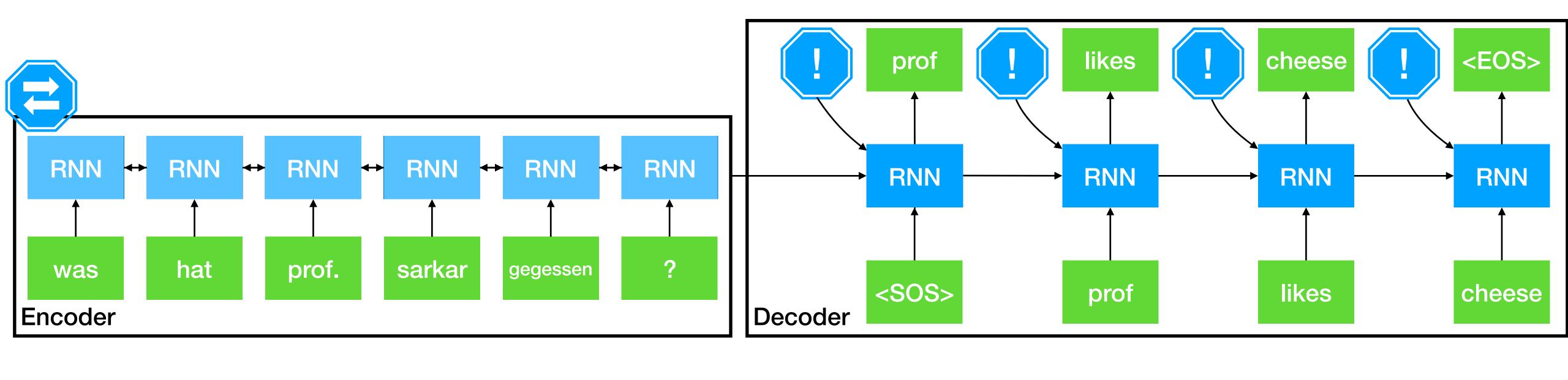
$Pr(E \mid F) = \Pi$

Sequence-to-Sequence

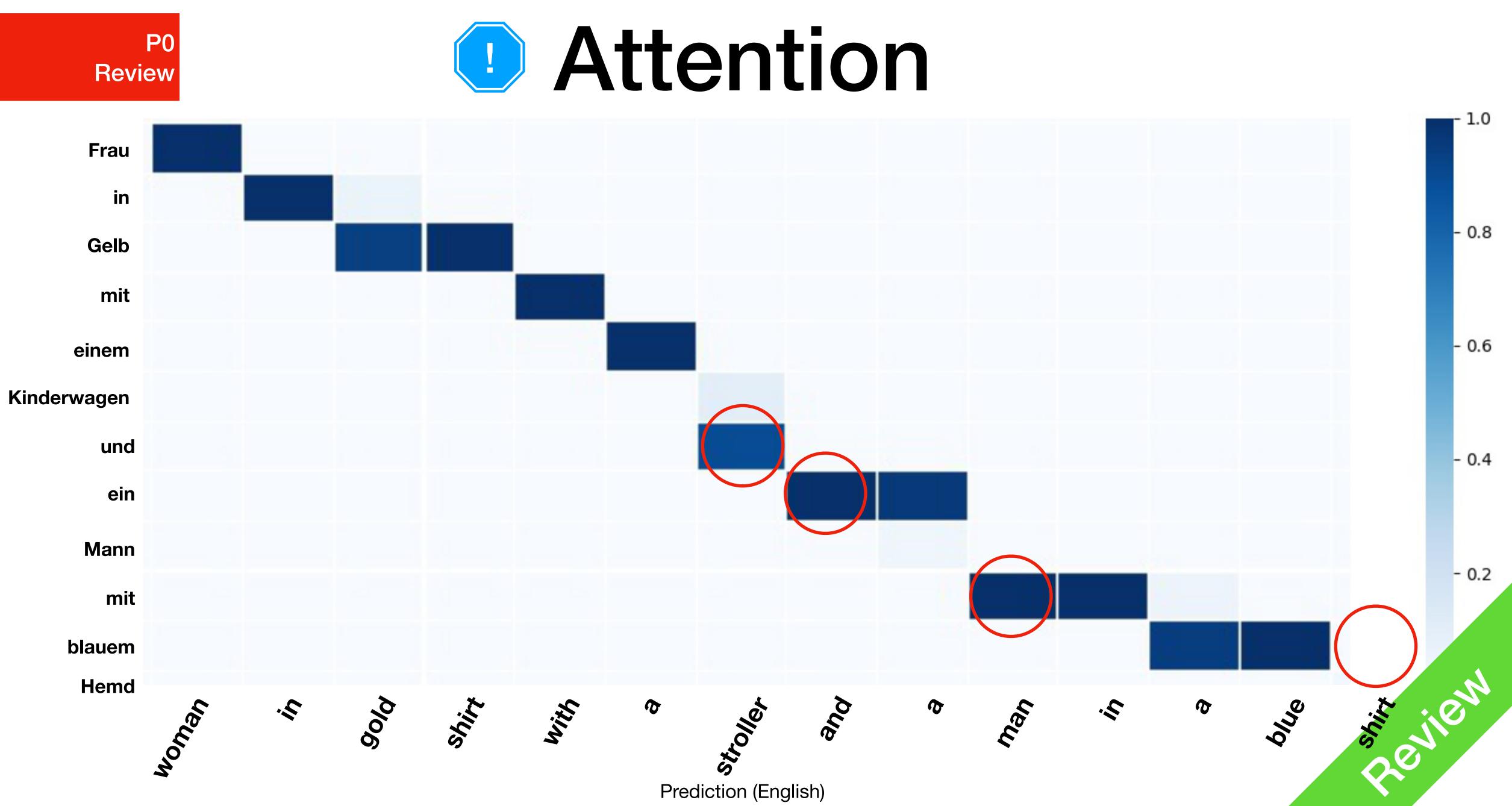
$$\frac{\mathbf{I}_t Pr(e' = e_t \,|\, F, e_{< t})}{\mathbf{CLM}}$$



P0 Review



Attention



- Why does Attention work?
- What is in the context vector?
- What is in α ?
 - It's alignment¹ !
 - learns to refer to useful information in src²
 - similar to human attention: we pay attention to whatever is needed

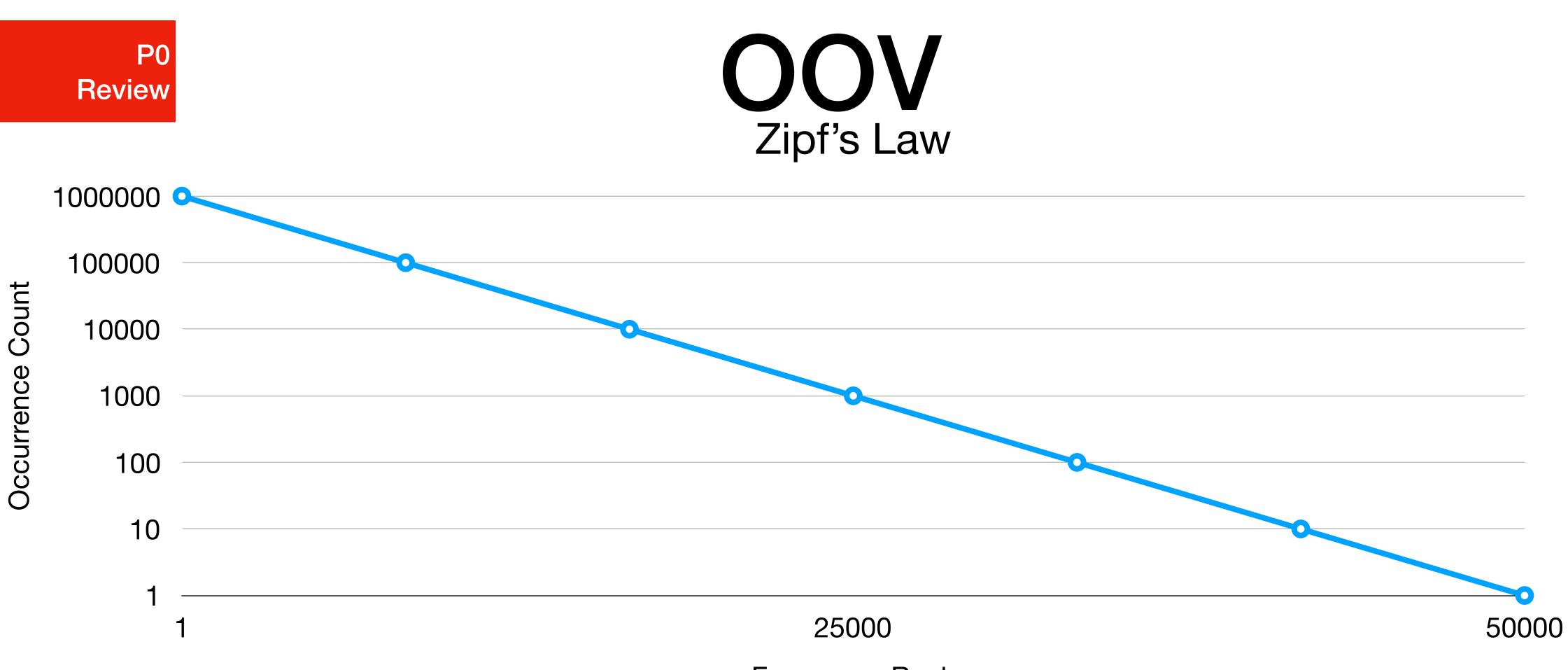
1. CL2015008 [Bahdanau et al.] Neural Machine Translation by Jointly Learning to Align and Translate 2. CL2017342 [Ghader et Monz] What does Attention in Neural Machine Translation Pay Attention to?

 $score_{t,i} = f(h_i^{enc}, h_t^{dec})$ $\alpha_t = \text{softmax}(score_{t_i})$ $context_t = \sum \alpha_{t,i} h_i^{enc}$



Review Common Problems of NMT

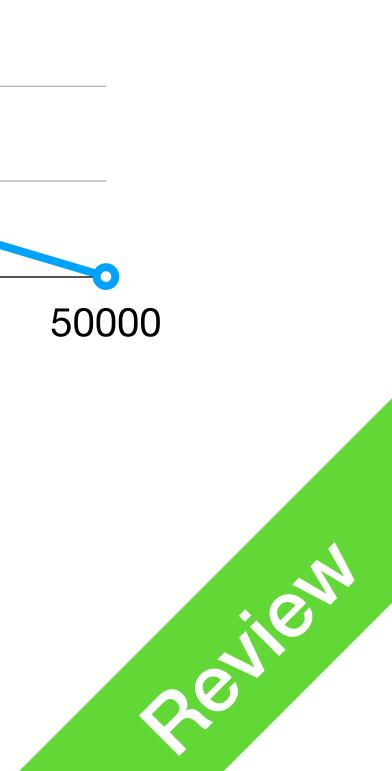
- Out-of-Vocabulary (OOV) Problem; Rare word problem
 - Frequent word are translated correctly, rare words are not
 - In any corpus, word frequencies are exponentially unbalanced



rare word are exponentially less frequent than frequent words

• e.g. in HW4, 45% 65% (src tgt) of the unique words occur once

Frequency Rank

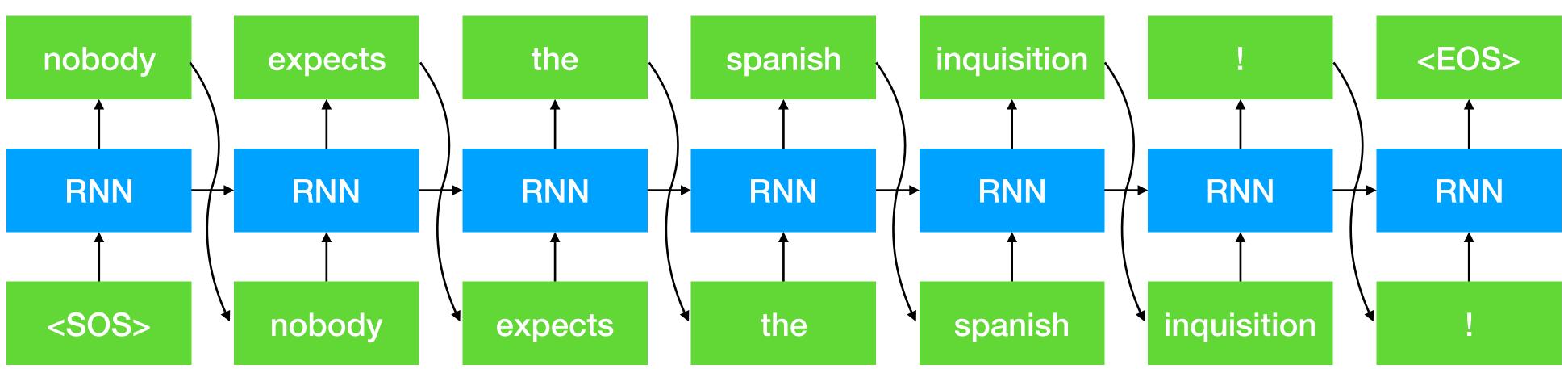


Review Common Problems of NMT

- Out-of-Vocabulary (OOV) Problem; Rare word problem
 - Frequent word are translated correctly, rare words are not
 - In any corpus, word frequencies are exponentially unbalanced
- Under translation
 - Crucial information are left untranslated; premature << COS>

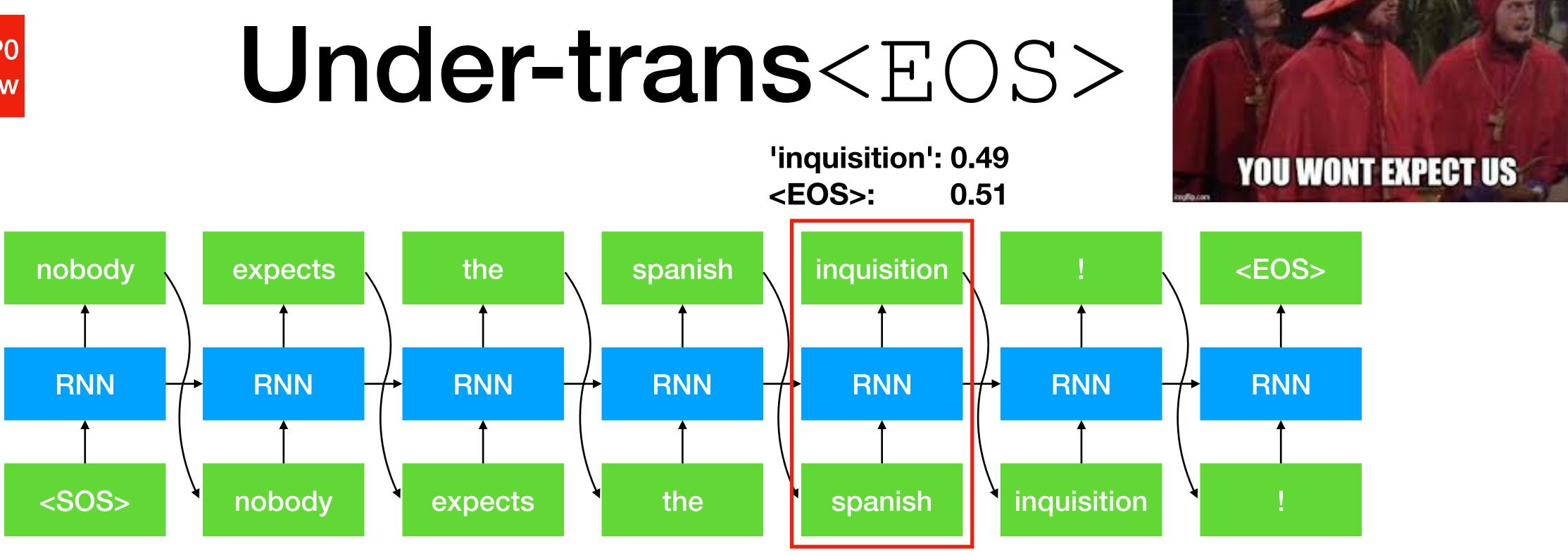
Under-trans<EOS>

P0 Review



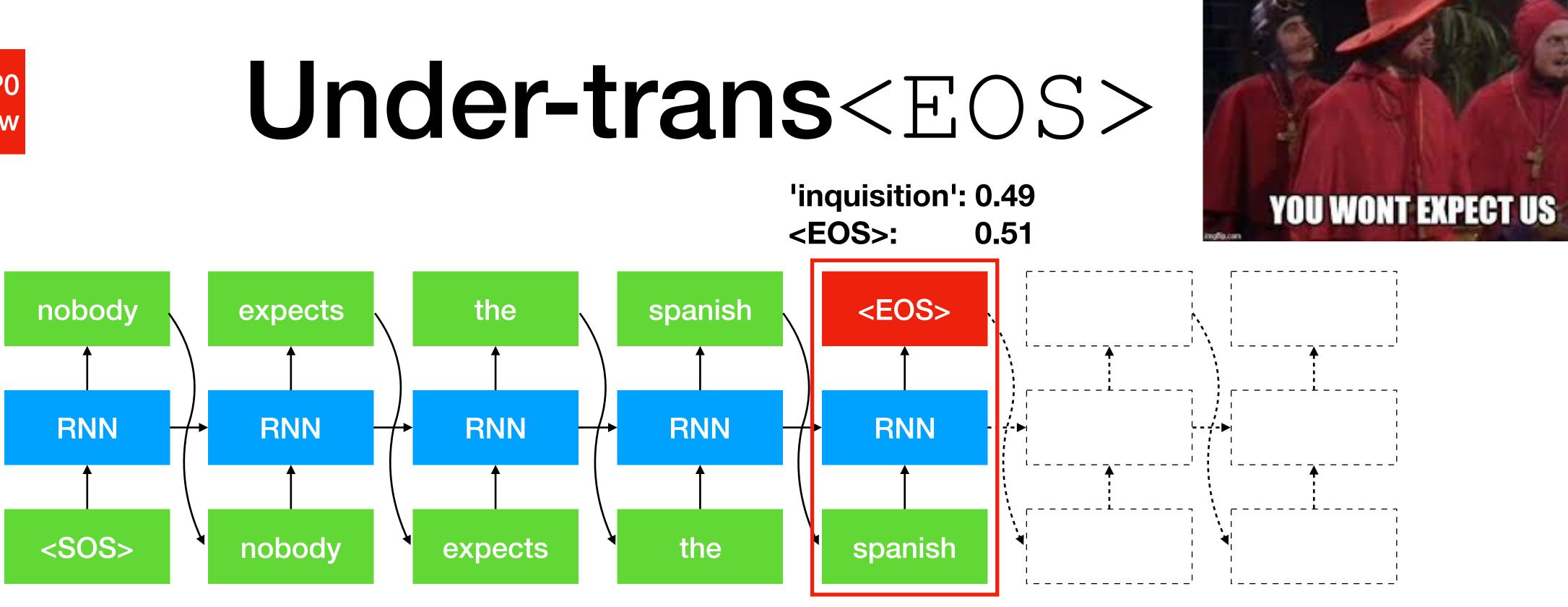
- Under translation
 - Crucial information are left untranslated; premature << COS>

P0 Review



- Under translation
 - Crucial information are left untranslated; premature <EOS>

P0 Review



- Under translation
 - Crucial information are left untranslated; premature <= OS>

Review Common Problems of NMT

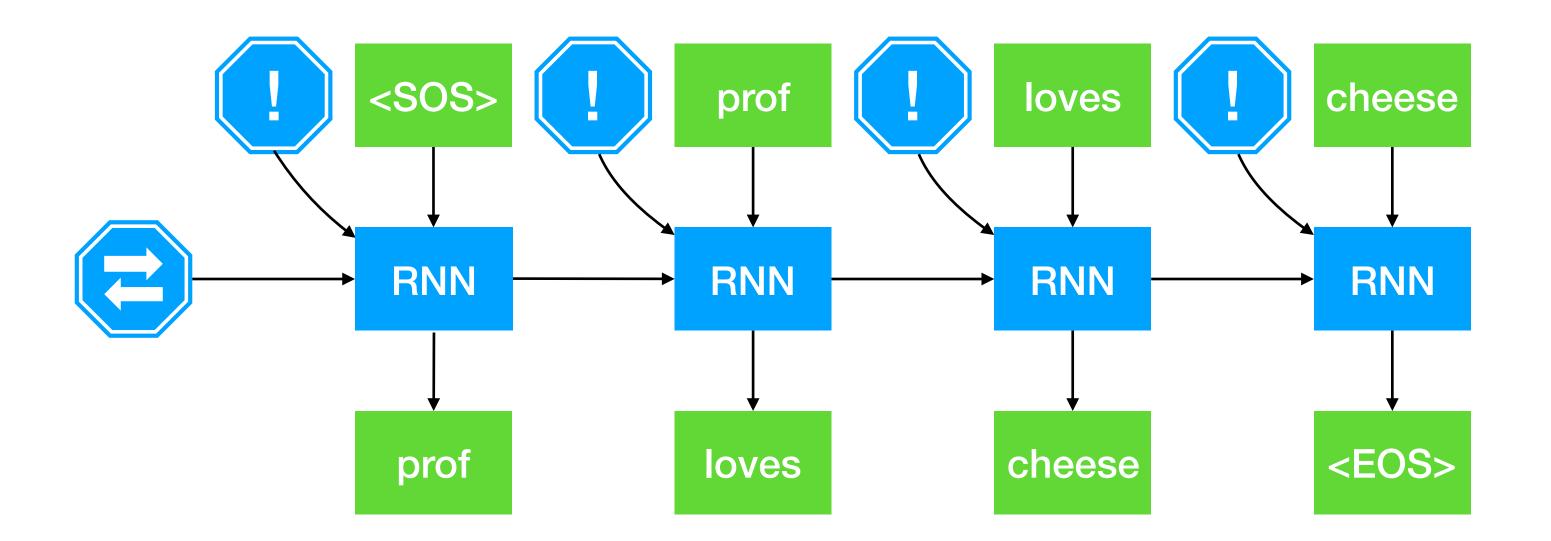
- Out-of-Vocabulary (OOV) Problem; Rare word problem
 - Frequent word are translated correctly, rare words are not
 - In any corpus, word frequencies are exponentially unbalanced
- Under translation
 - Crucial information are left untranslated; premature << COS>

Review Common Problems of NMT

- Out-of-Vocabulary (OOV) Problem; Rare word problem
 - Copy Mechanisms
 - Char-level Encoder (oops for logogram, e.g. Chinese)
- Under translation
 - Ensemble
 - Beam search
 - Coverage models

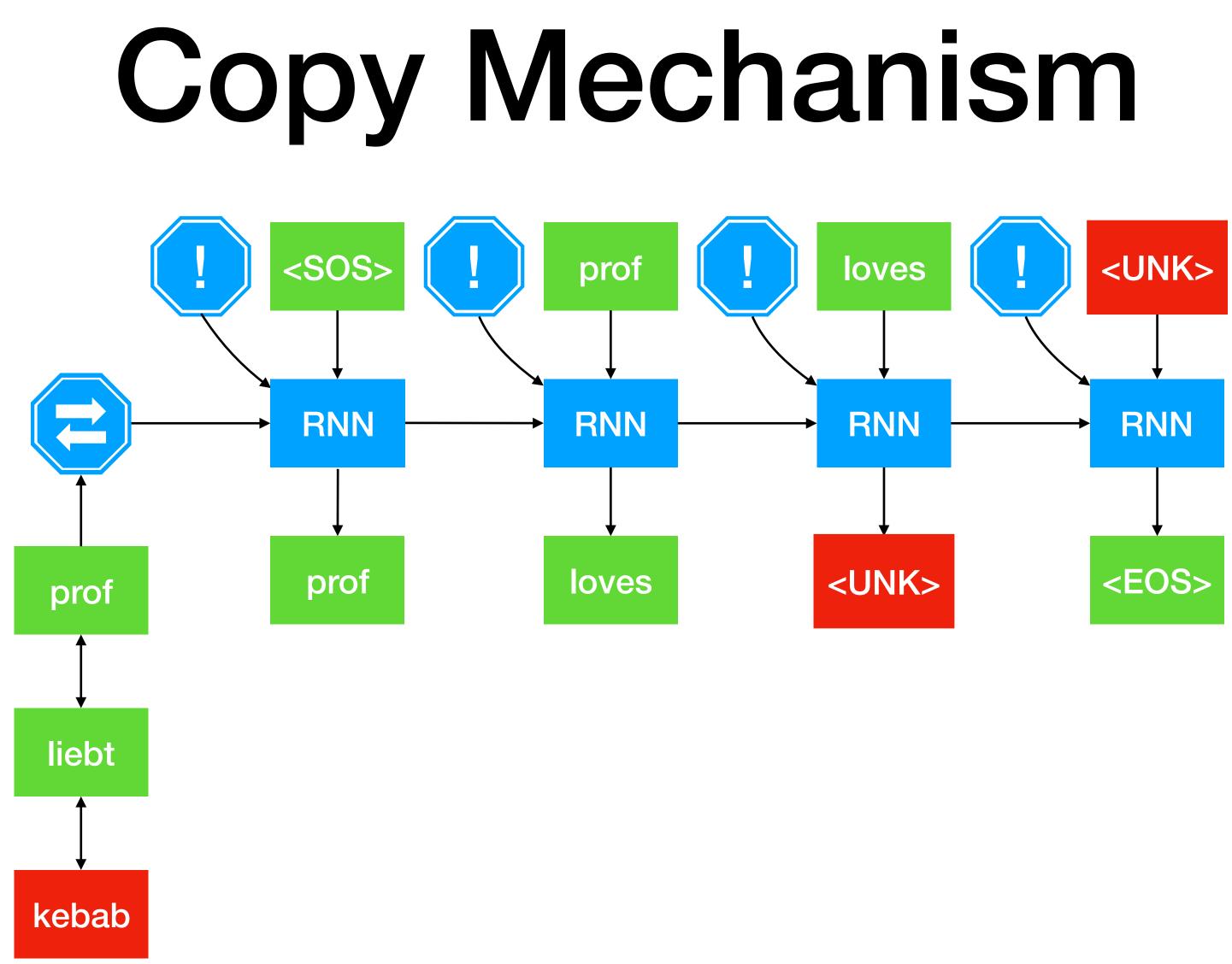
Copy Mechanism

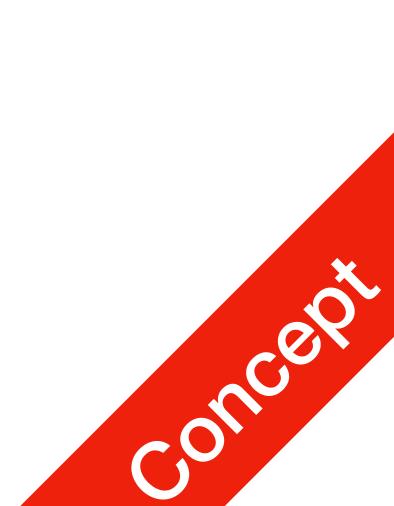
P1 Copy

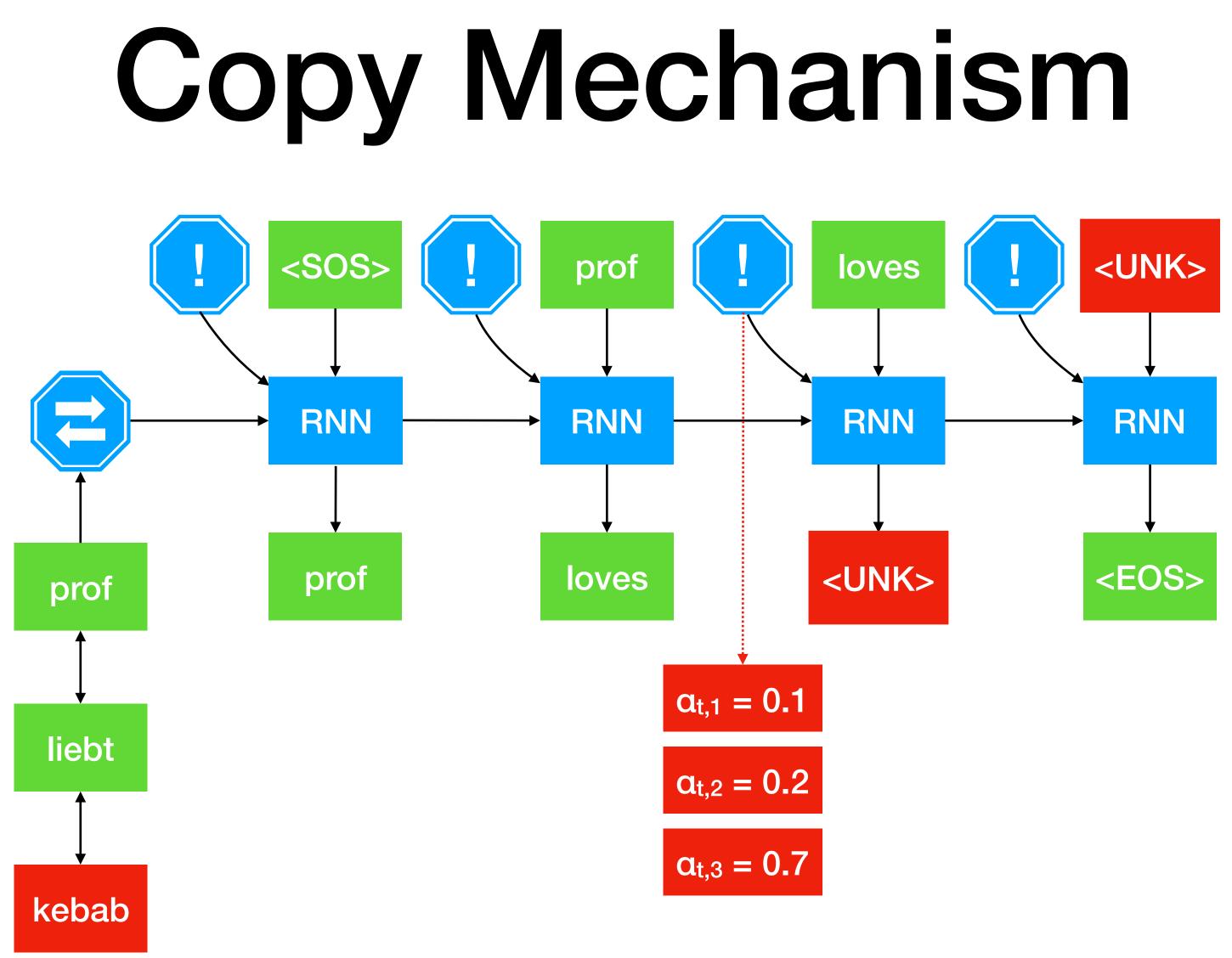


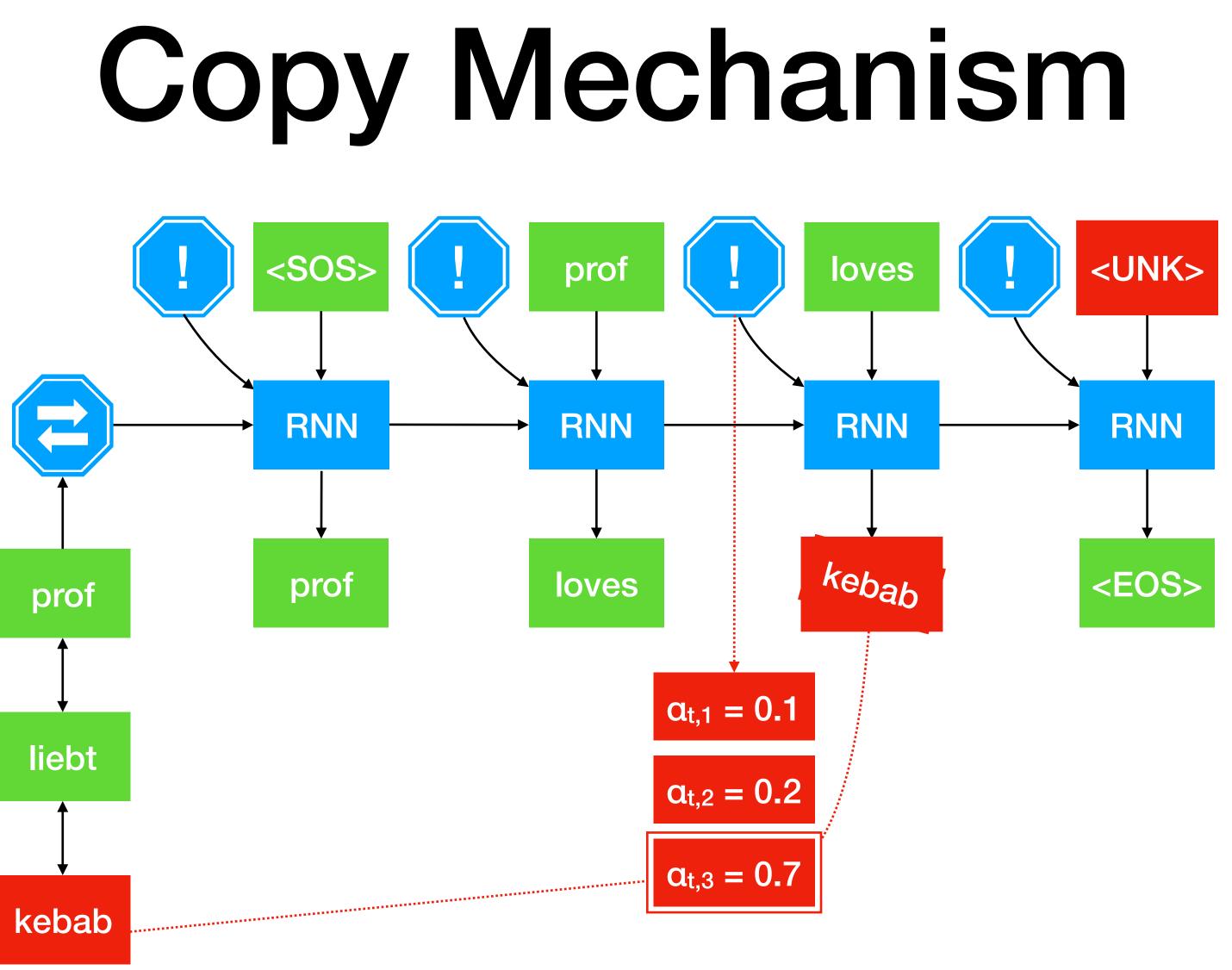
1. CL2015015 [Luong et al.] Addressing the Rare Word Problem in Neural Machine Translation

cor



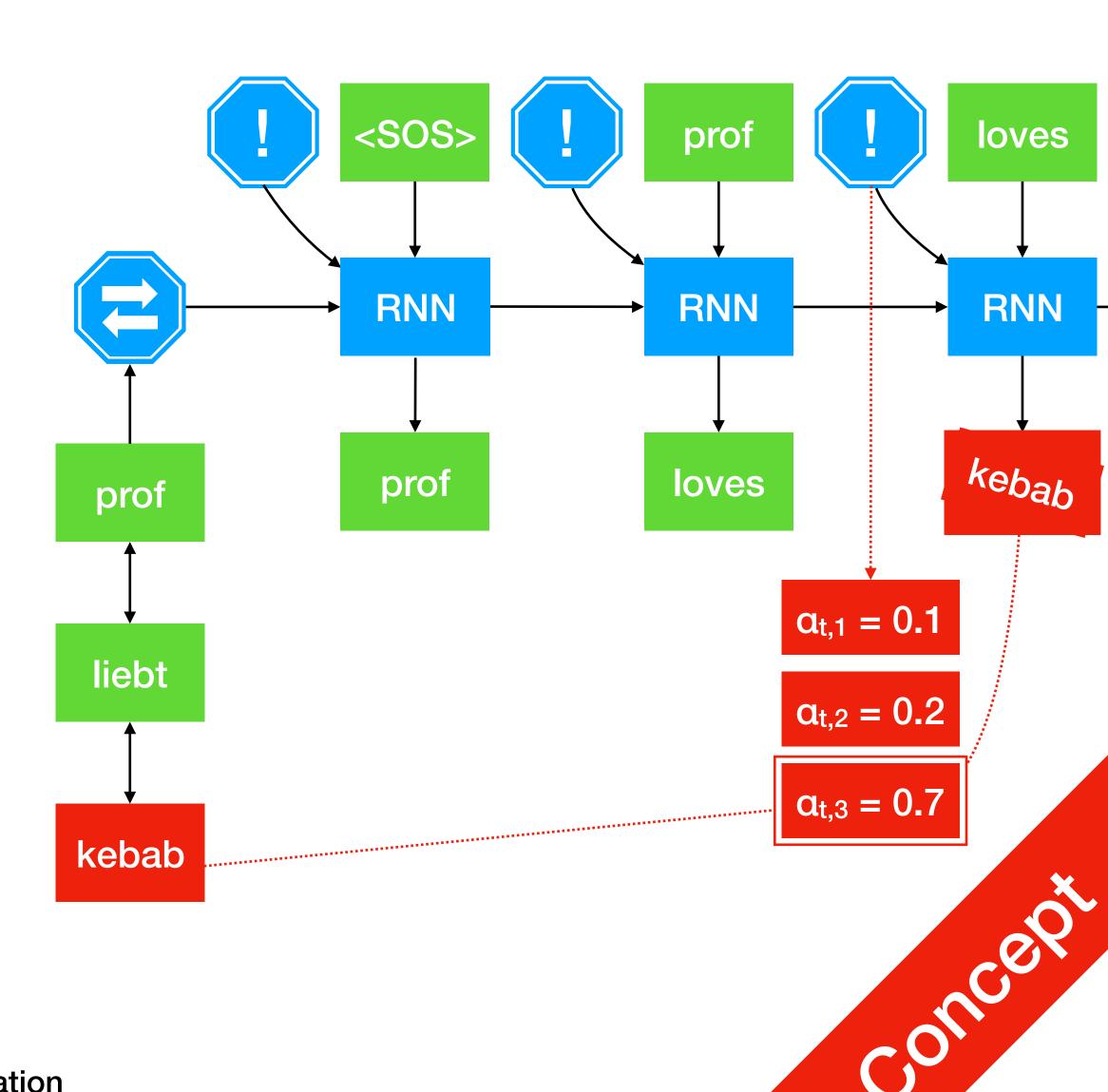


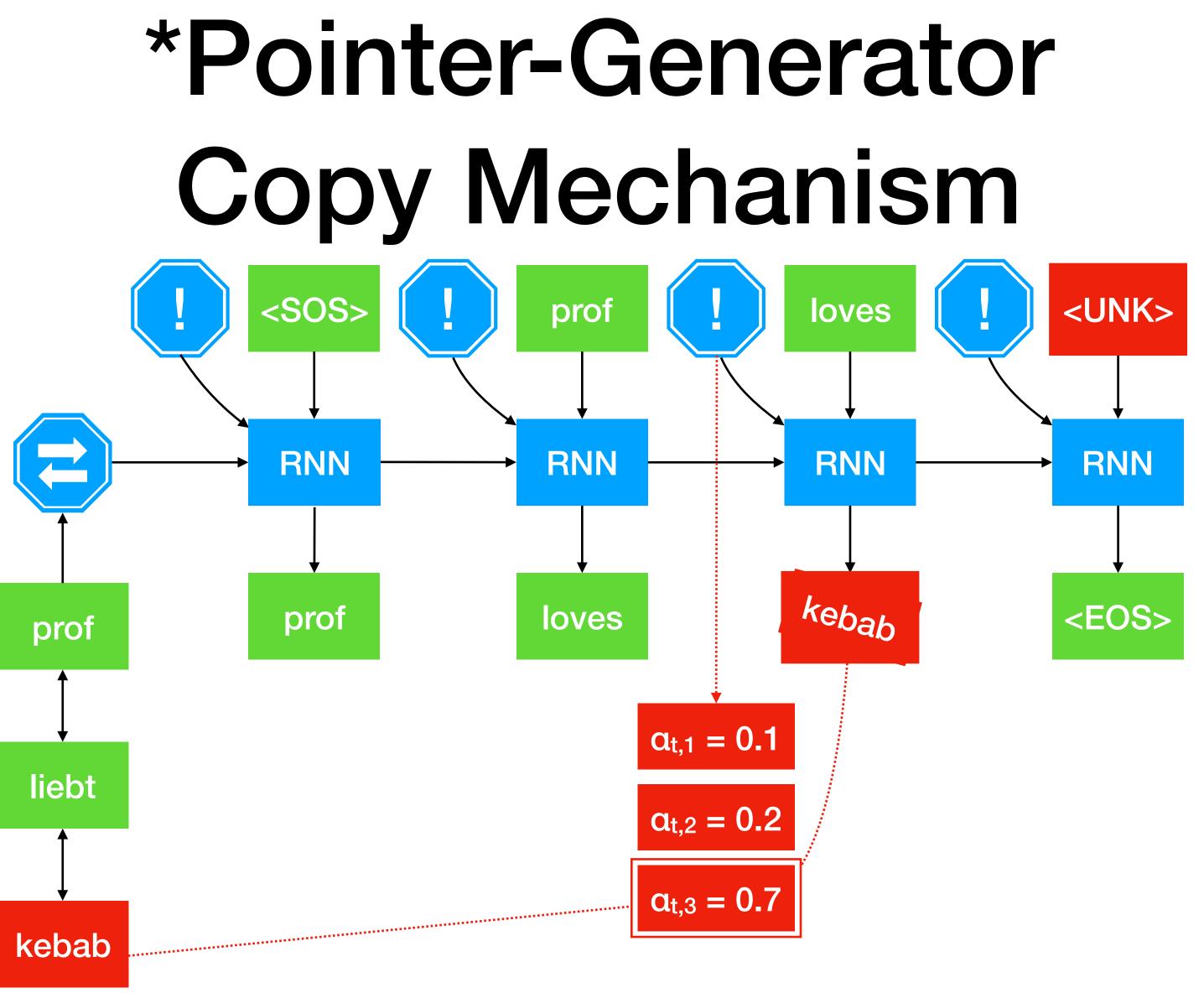




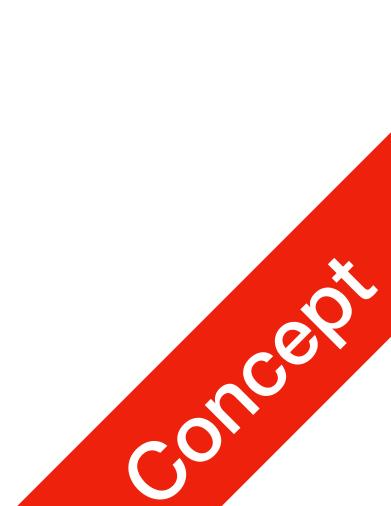
Copy Mechanism

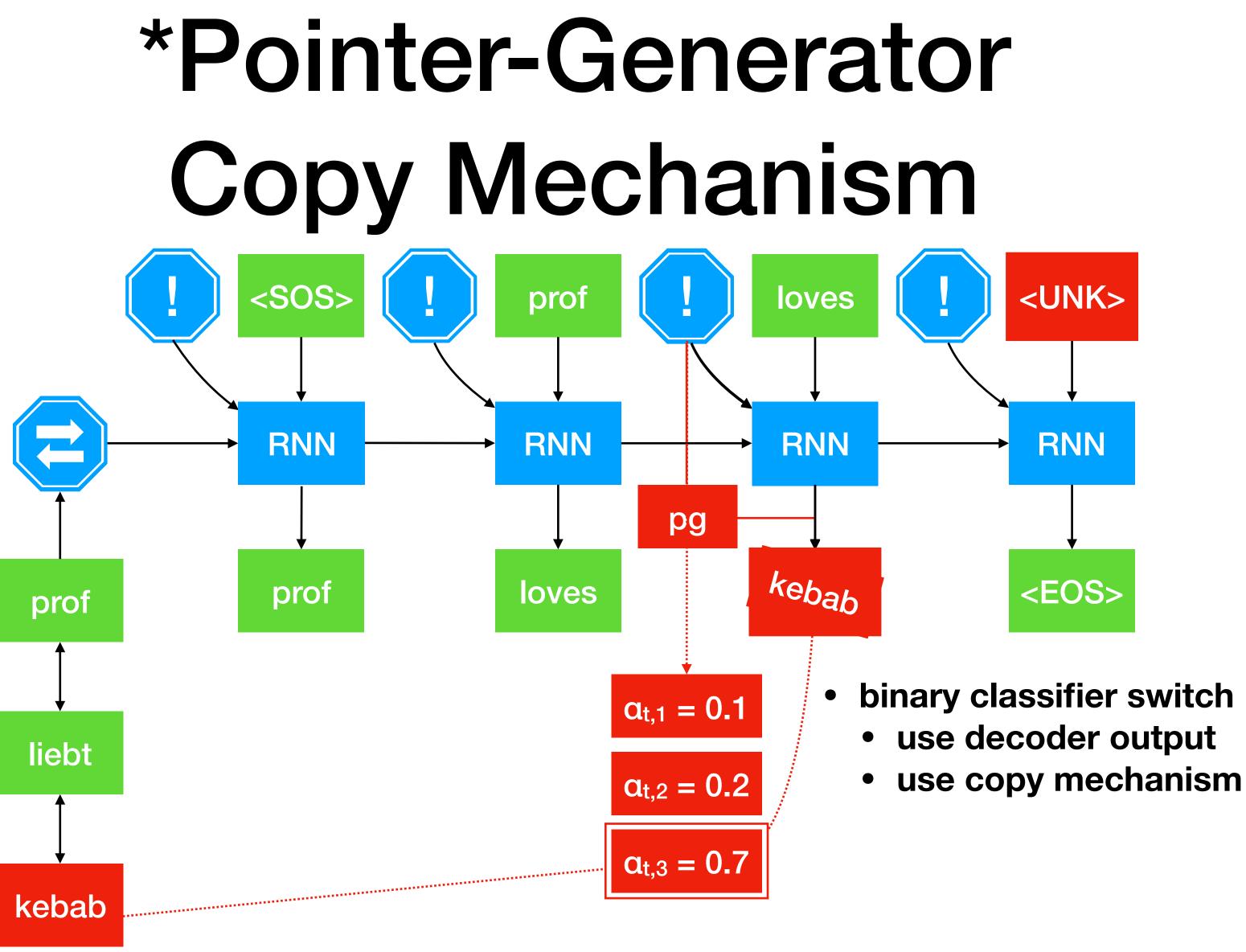
- Sees <UNK> at step *t*
 - looks at attention weight α_t
 - replace <UNK> with the source word $f_{argmax_i\alpha_{t,i}}$





1. CL2016032 [Gulcehre et al.] Pointing the Unknown Words





P1 Copy

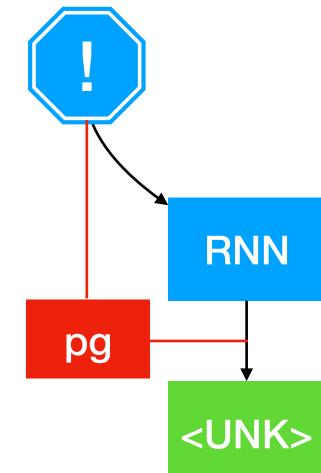
1. CL2016032 [Gulcehre et al.] Pointing the Unknown Words

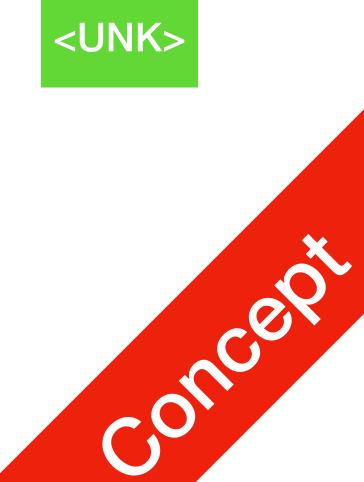


*Pointer-Generator Copy Mechanism

- Sees <UNK> at step *t*, or $pg([h_t^{dec}; context_t]) \le 0.5$
 - looks at attention weight α_t
 - replace <UNK> with the source word $f_{argmax_i\alpha_{t,i}}$

1. CL2016032 [Gulcehre et al.] Pointing the Unknown Words

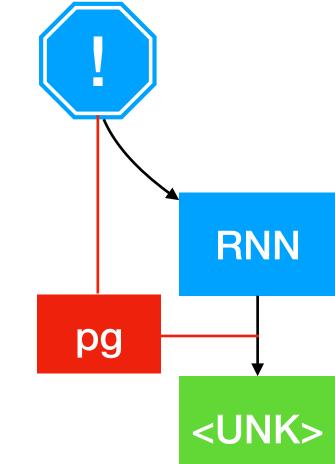


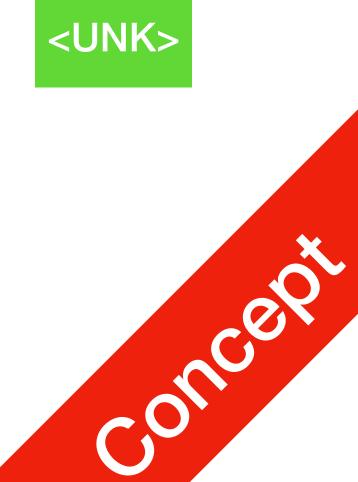


*Pointer-Based **Dictionary Fusion**

- Sees <UNK> at step *t*, or $pg([h_t^{dec}; context_t]) \le 0.5$
 - looks at attention weight α_t
 - replace <UNK> with translation of the source word $dict(f_{argmax_i\alpha_t})$

1. CL2019331 [Gū et al.] Pointer-based Fusion of Bilingual Lexicons into Neural Machine Translation





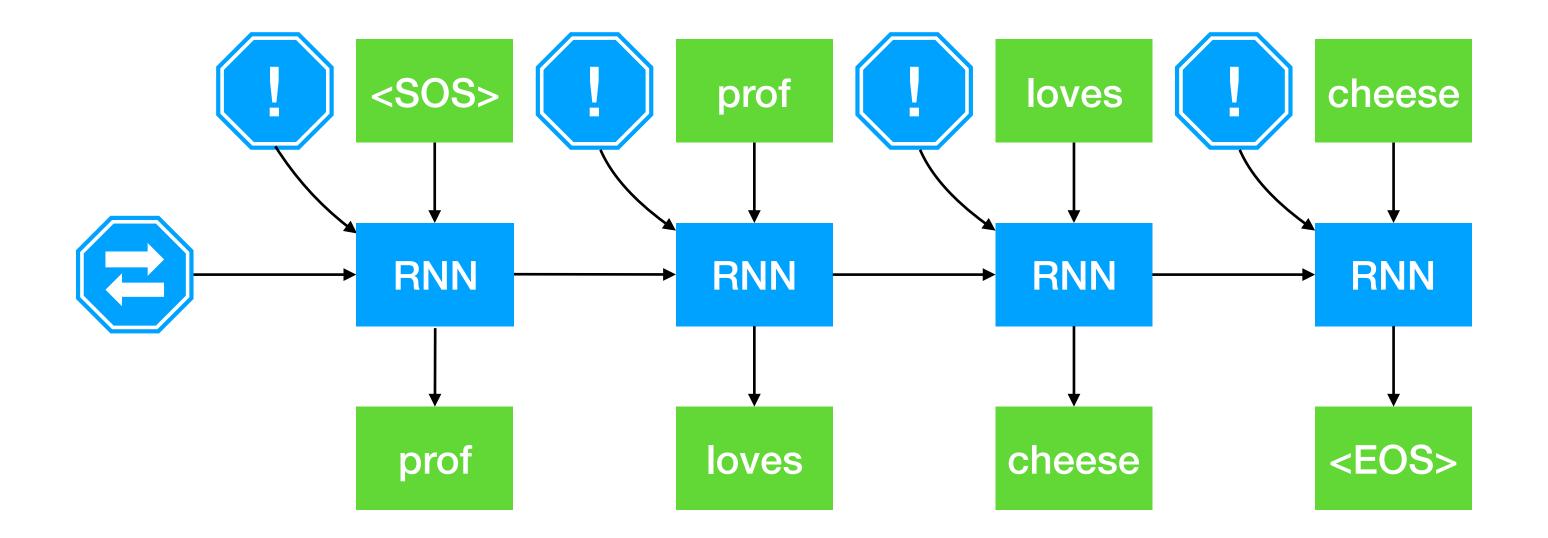
Ensemble

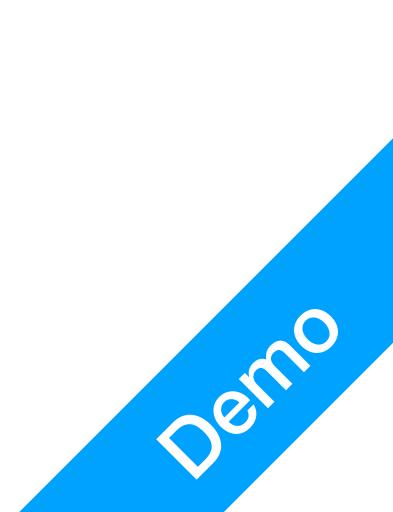
- Similar to voting mechanism, but with probabilities
 - of the same training instance)
 - use the output with the highest probability across all models

multiple models of different parameters (usually from different checkpoints

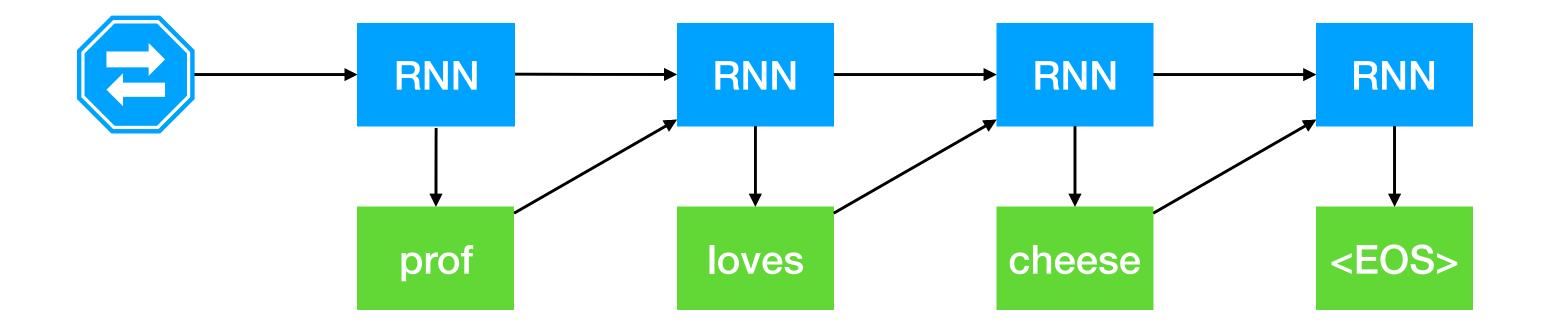


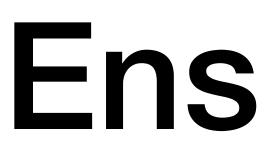
Ensemble





Ensemble

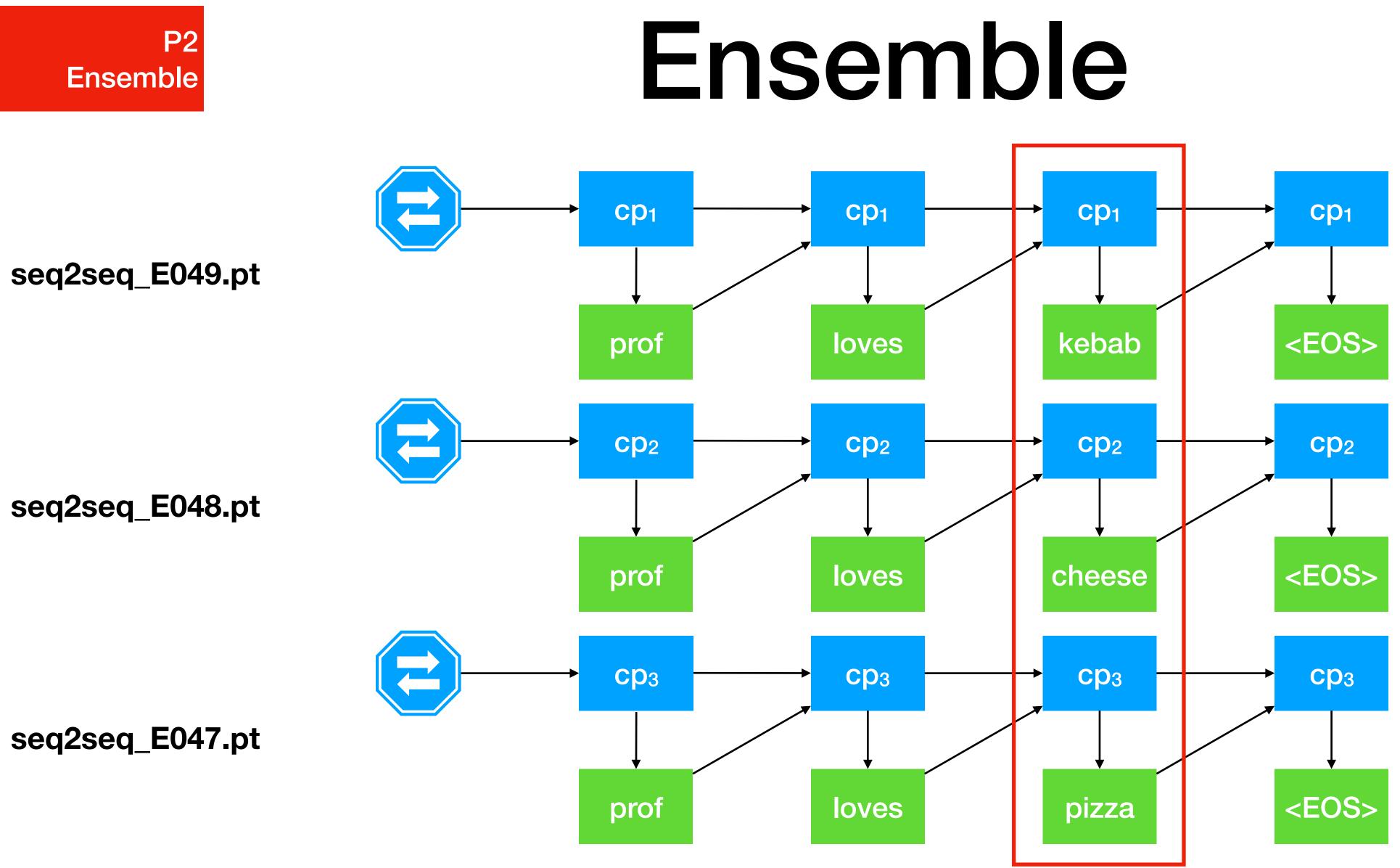


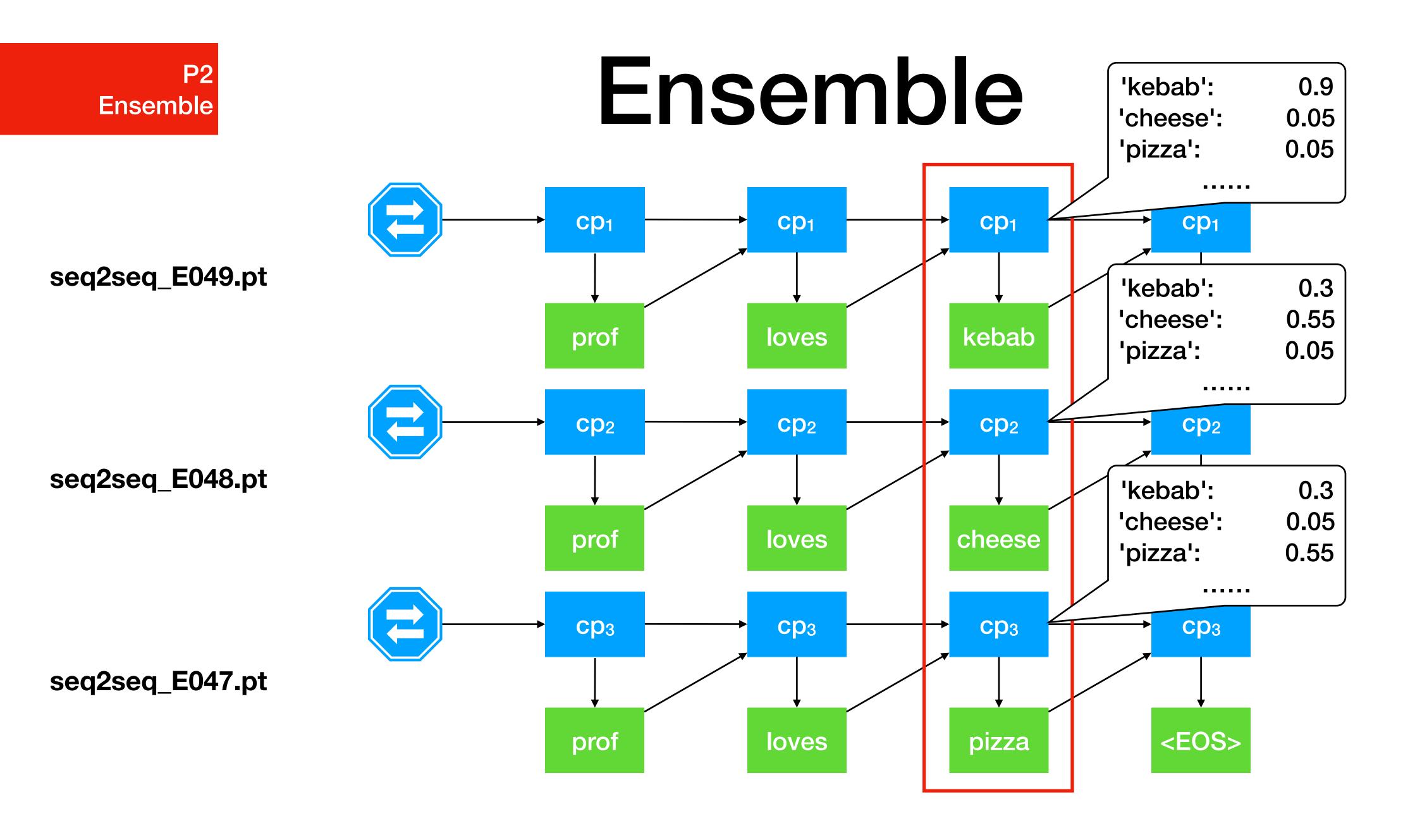


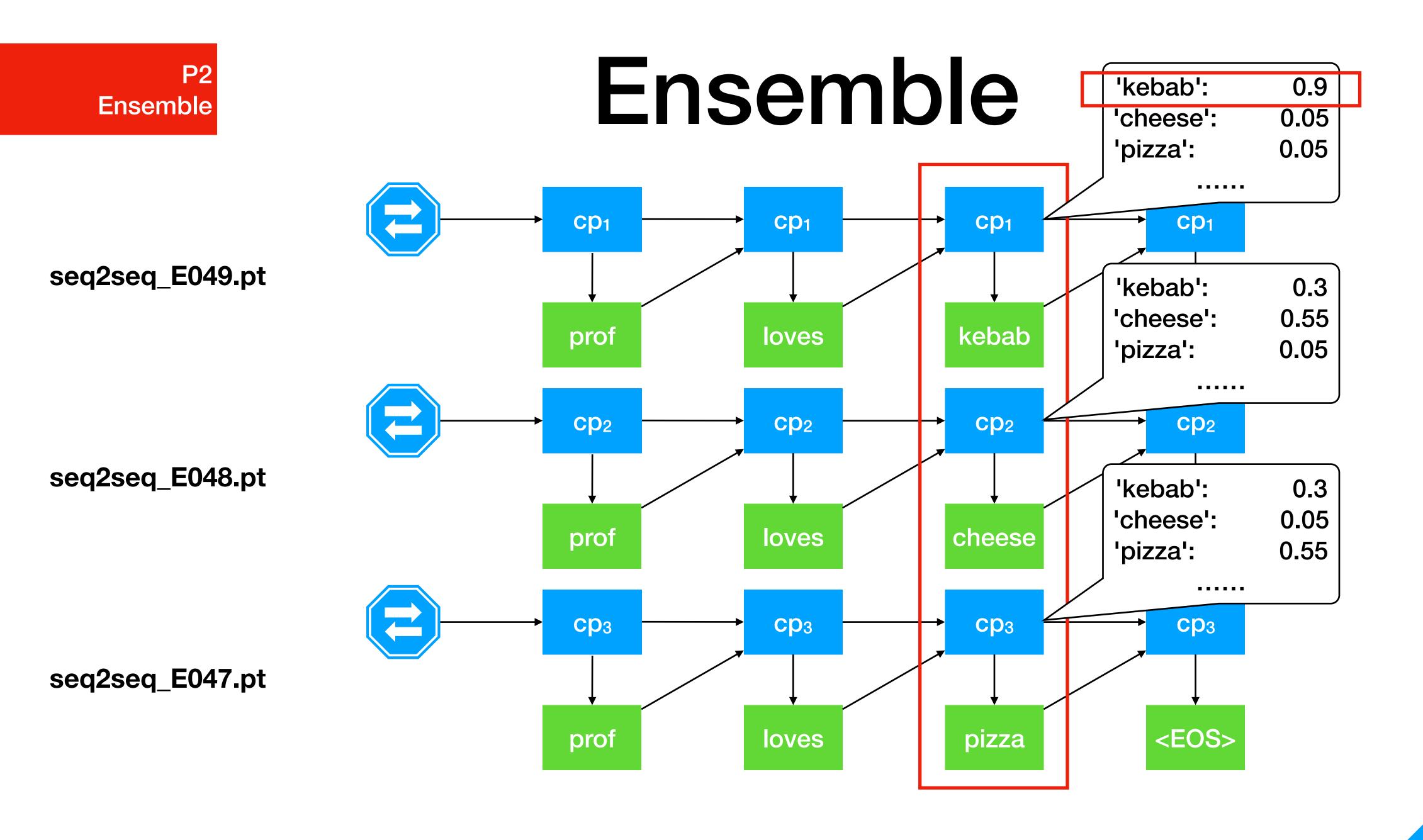


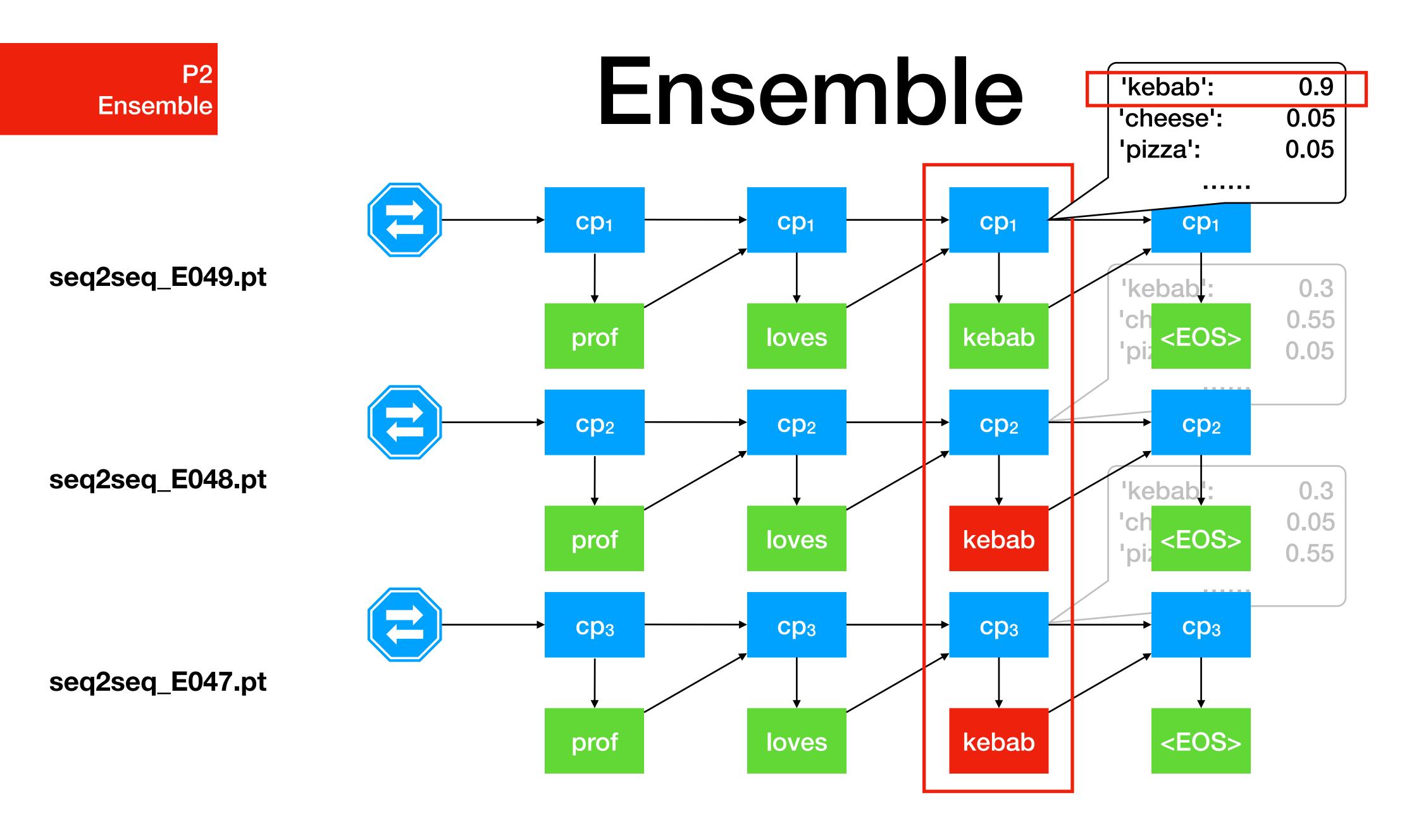
seq2seq_E049.pt

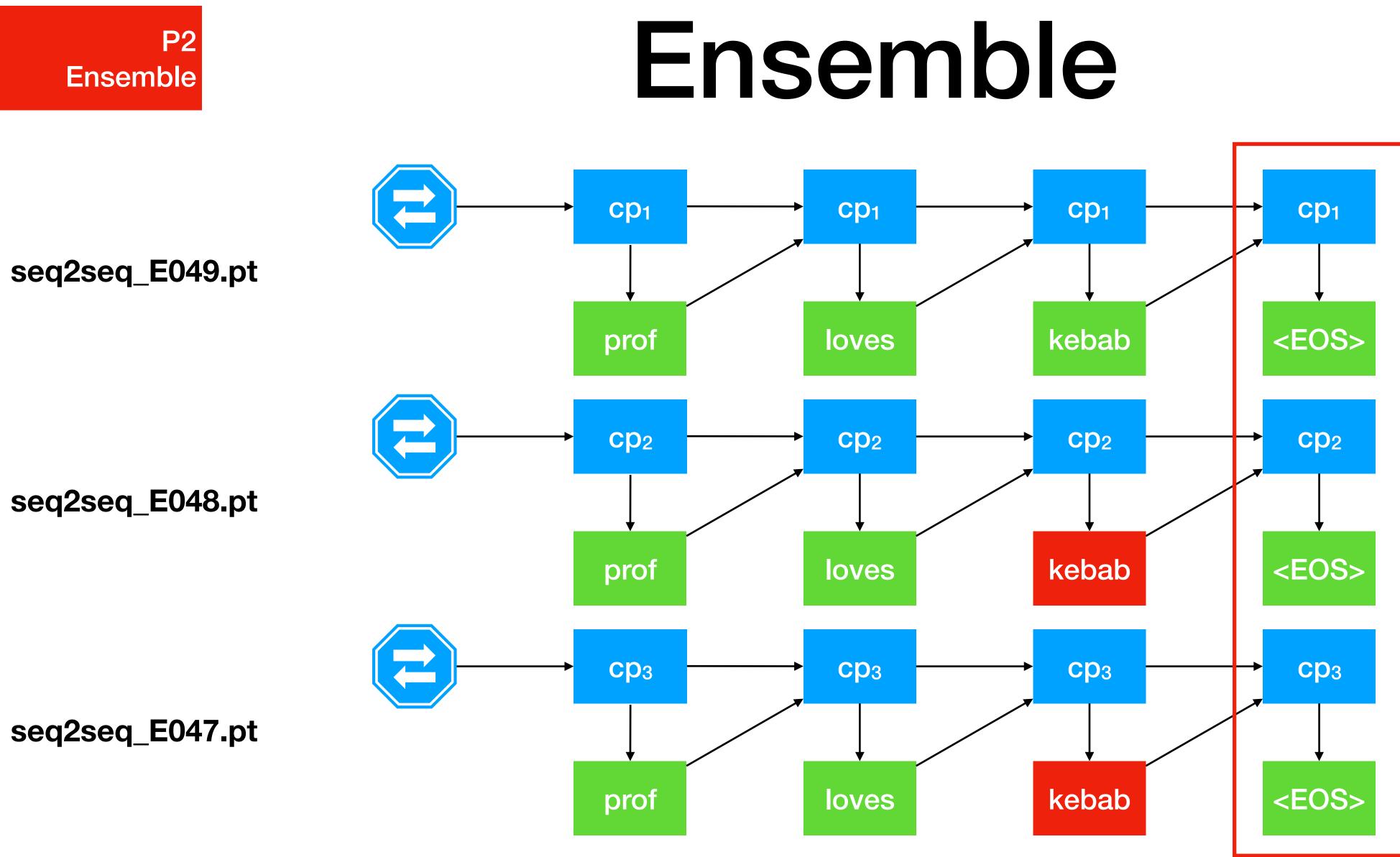
Ensemble









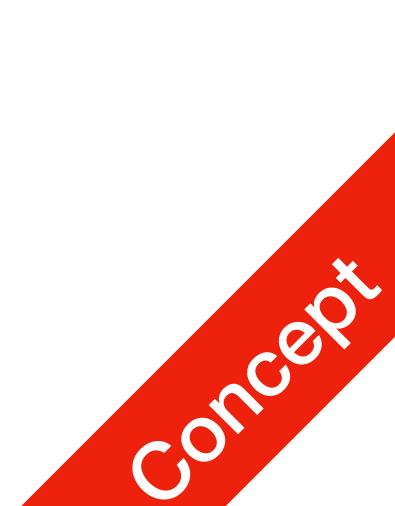


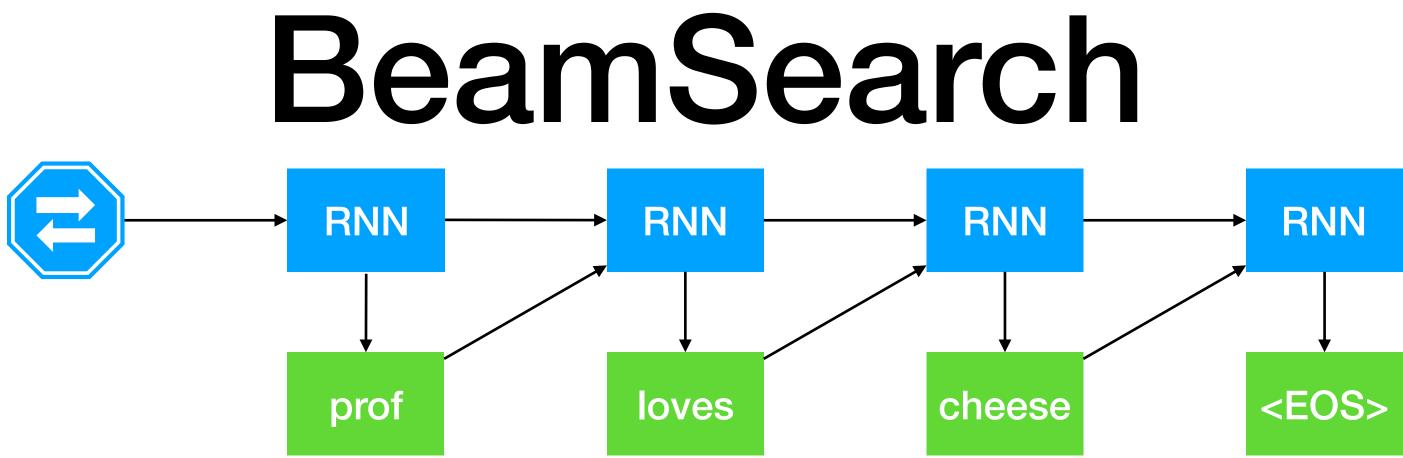


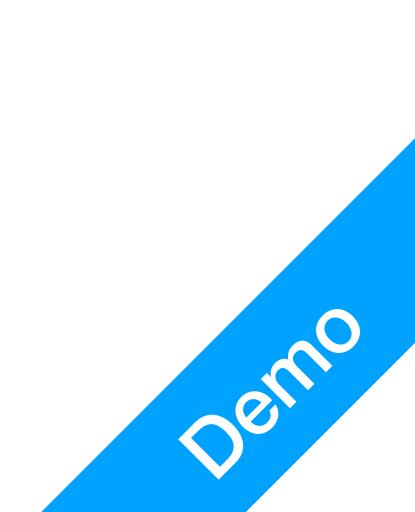
BeamSearch

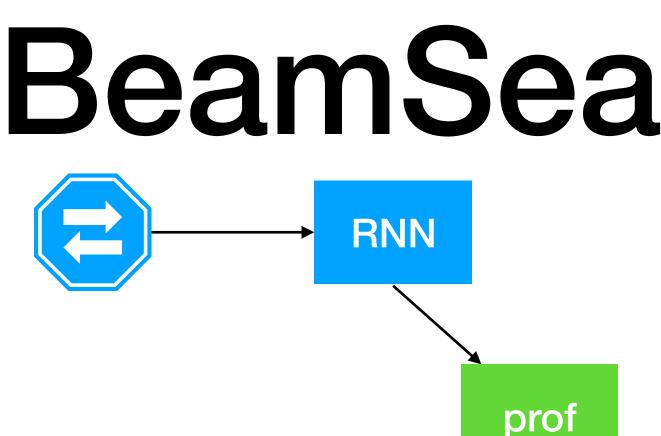
 Consider multiple hypothesis at eac programme on a tree

• Consider multiple hypothesis at each step *t*, formulate decoding as a search

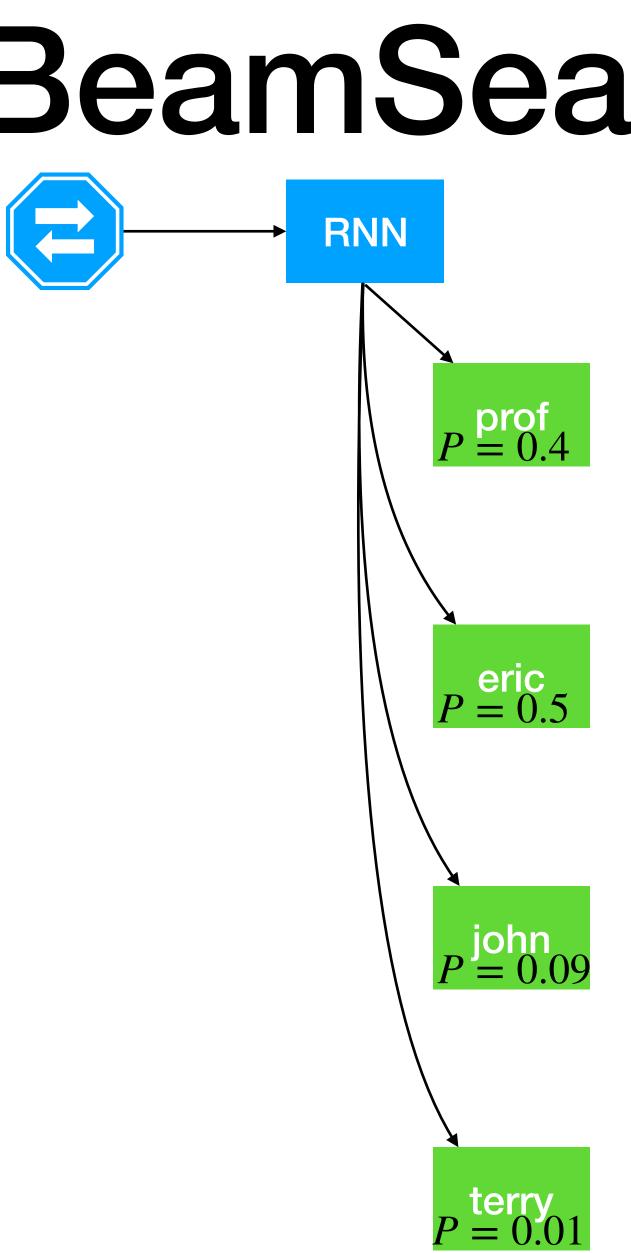




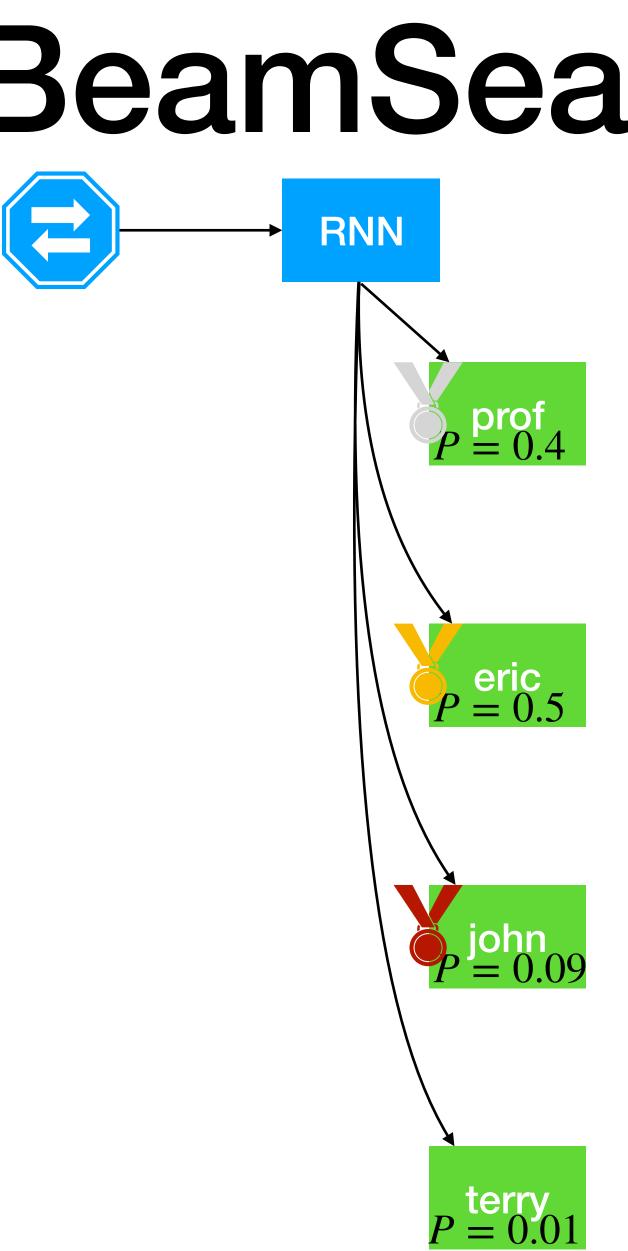


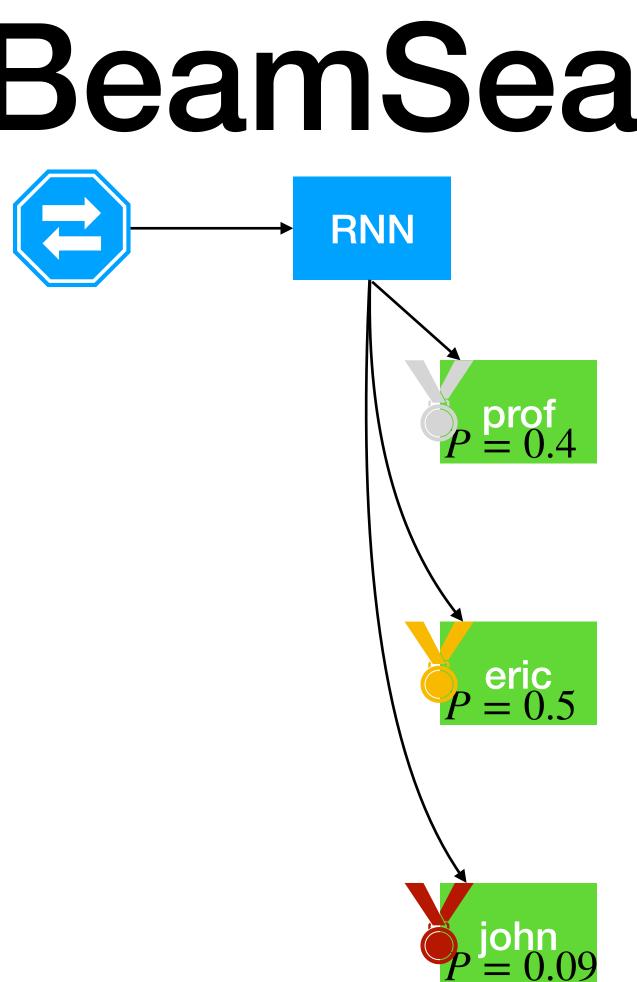


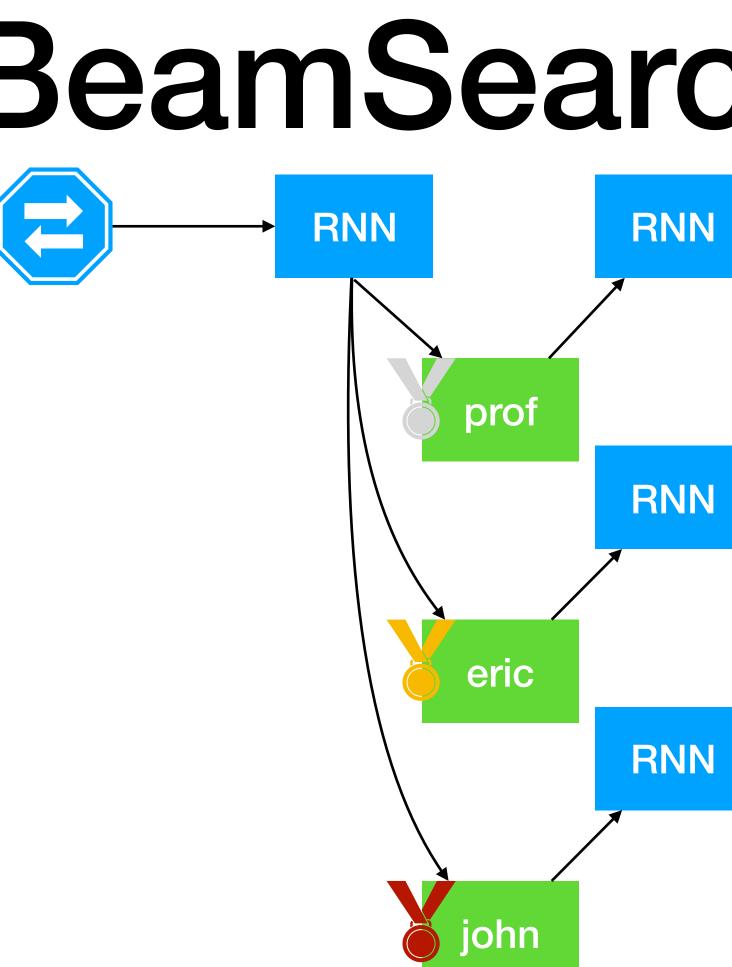
BeamSearch (Size=3)

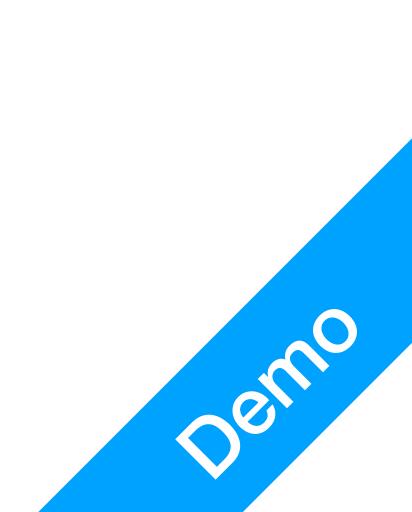


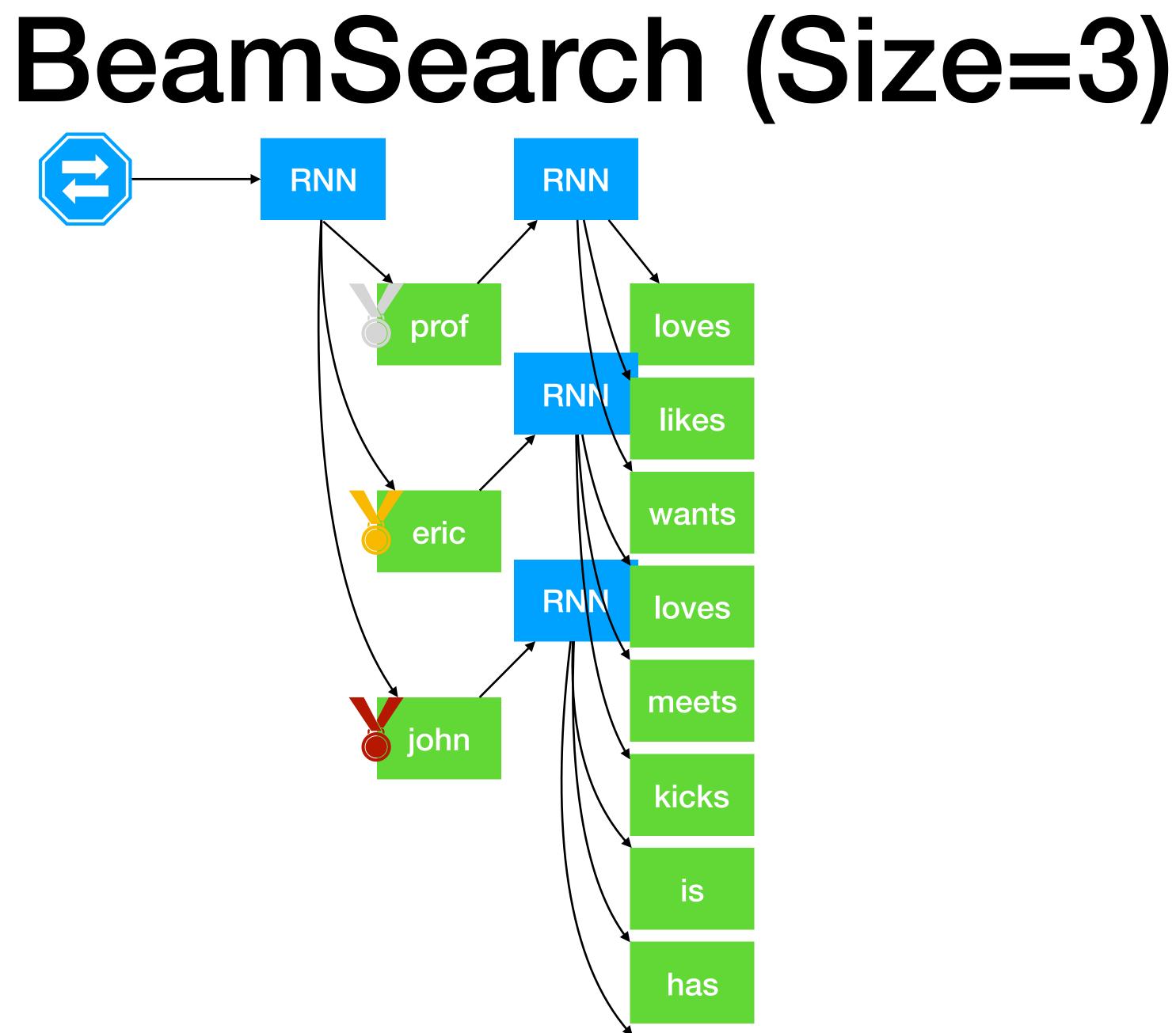
BeamSearch (Size=3)

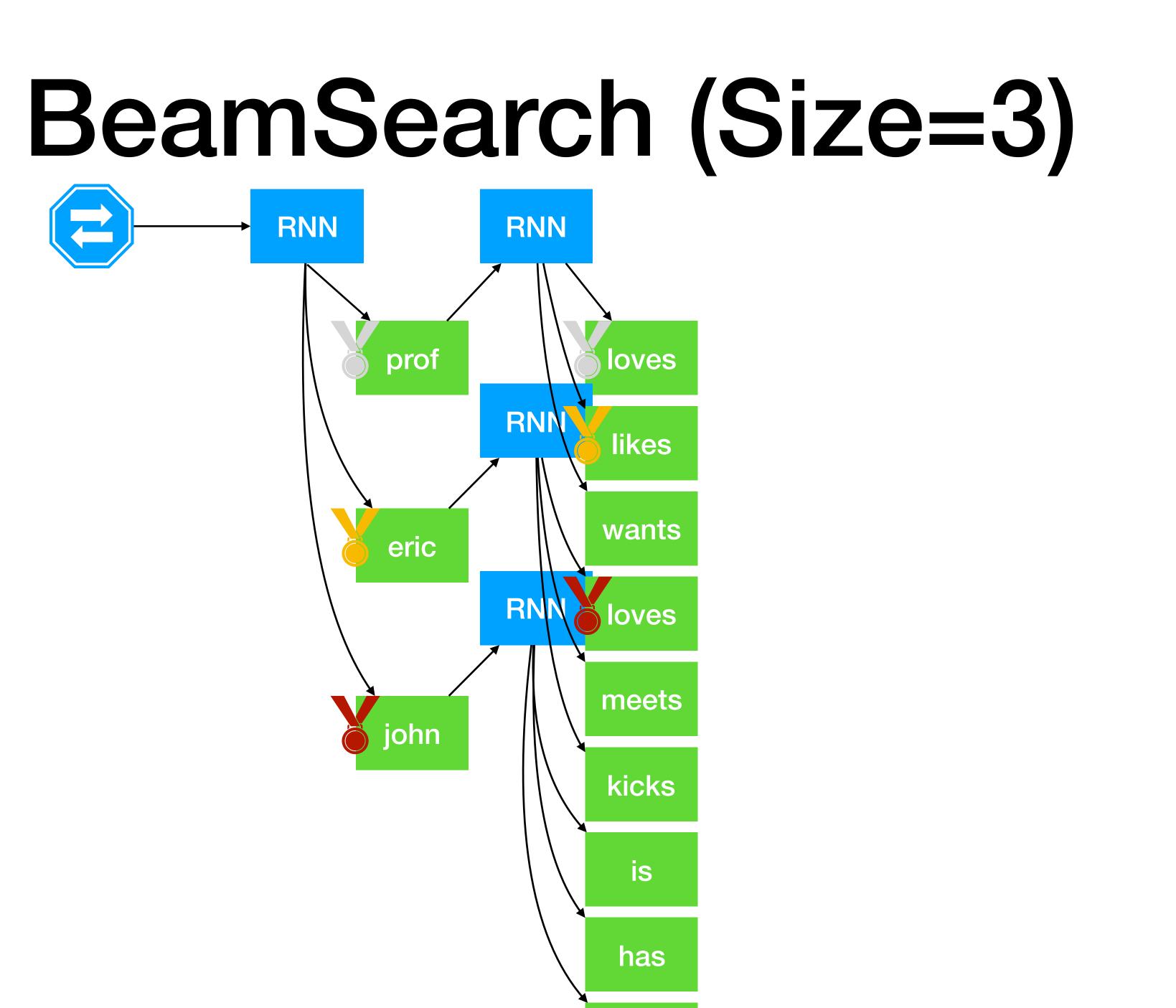




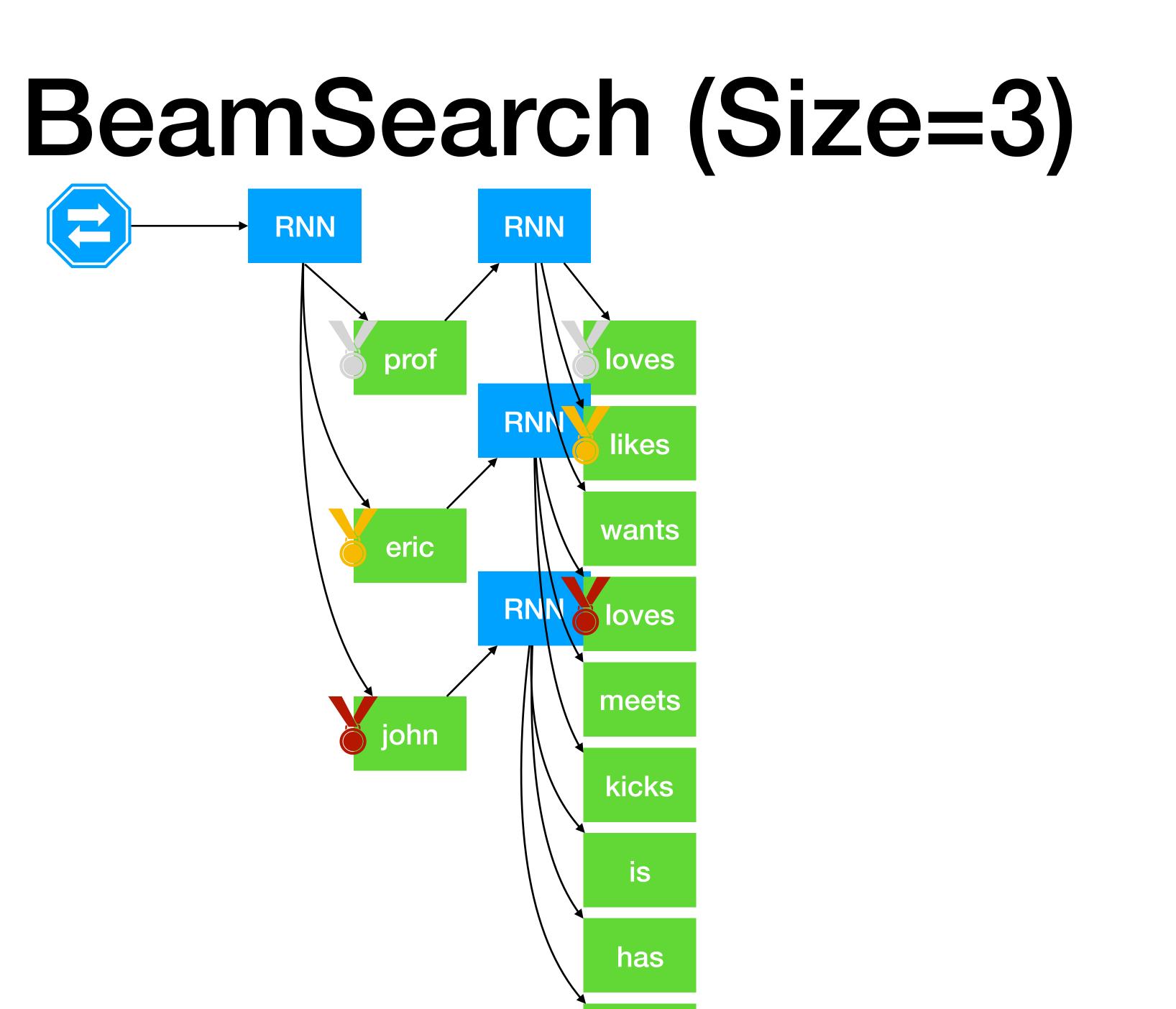


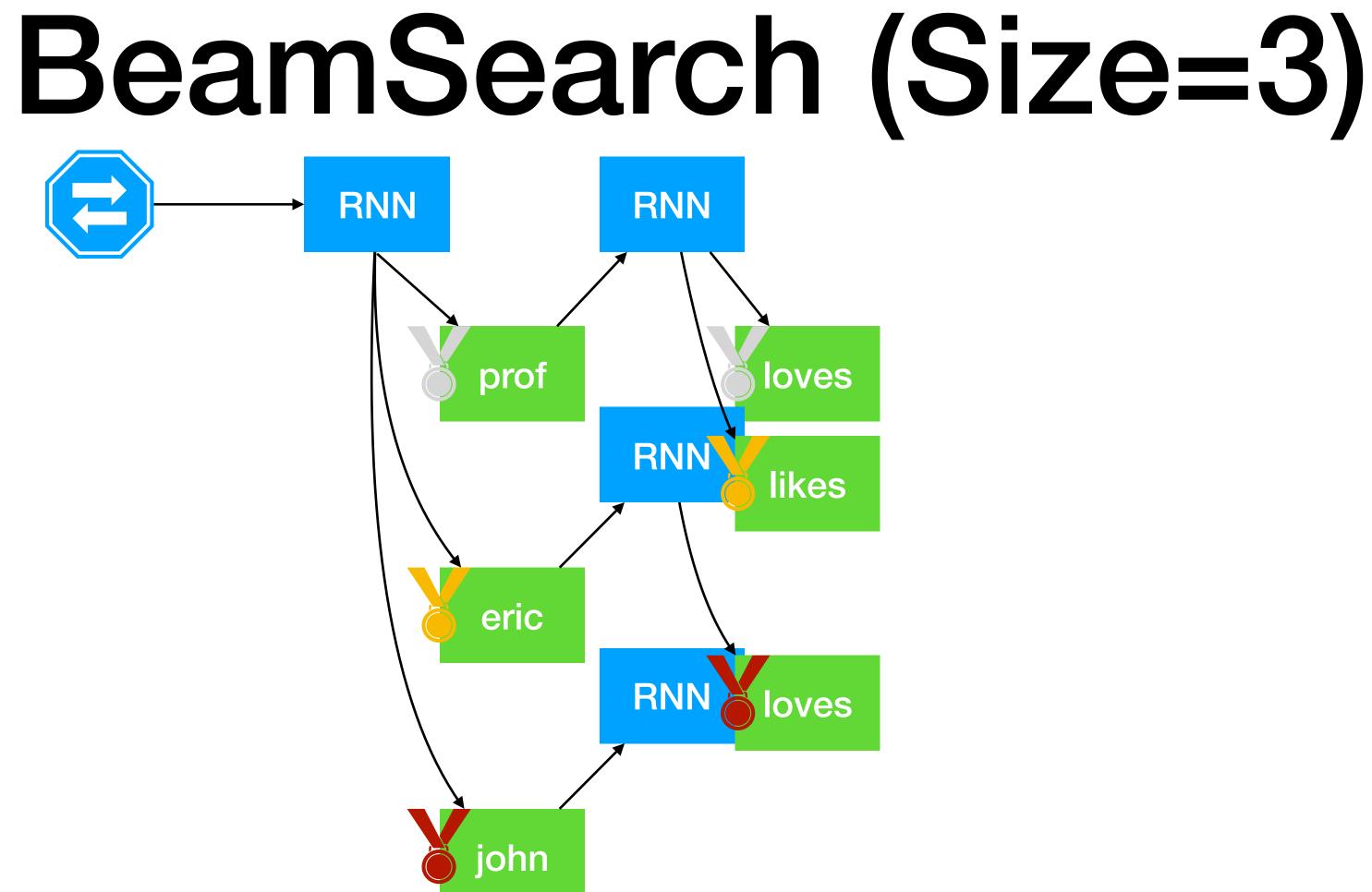


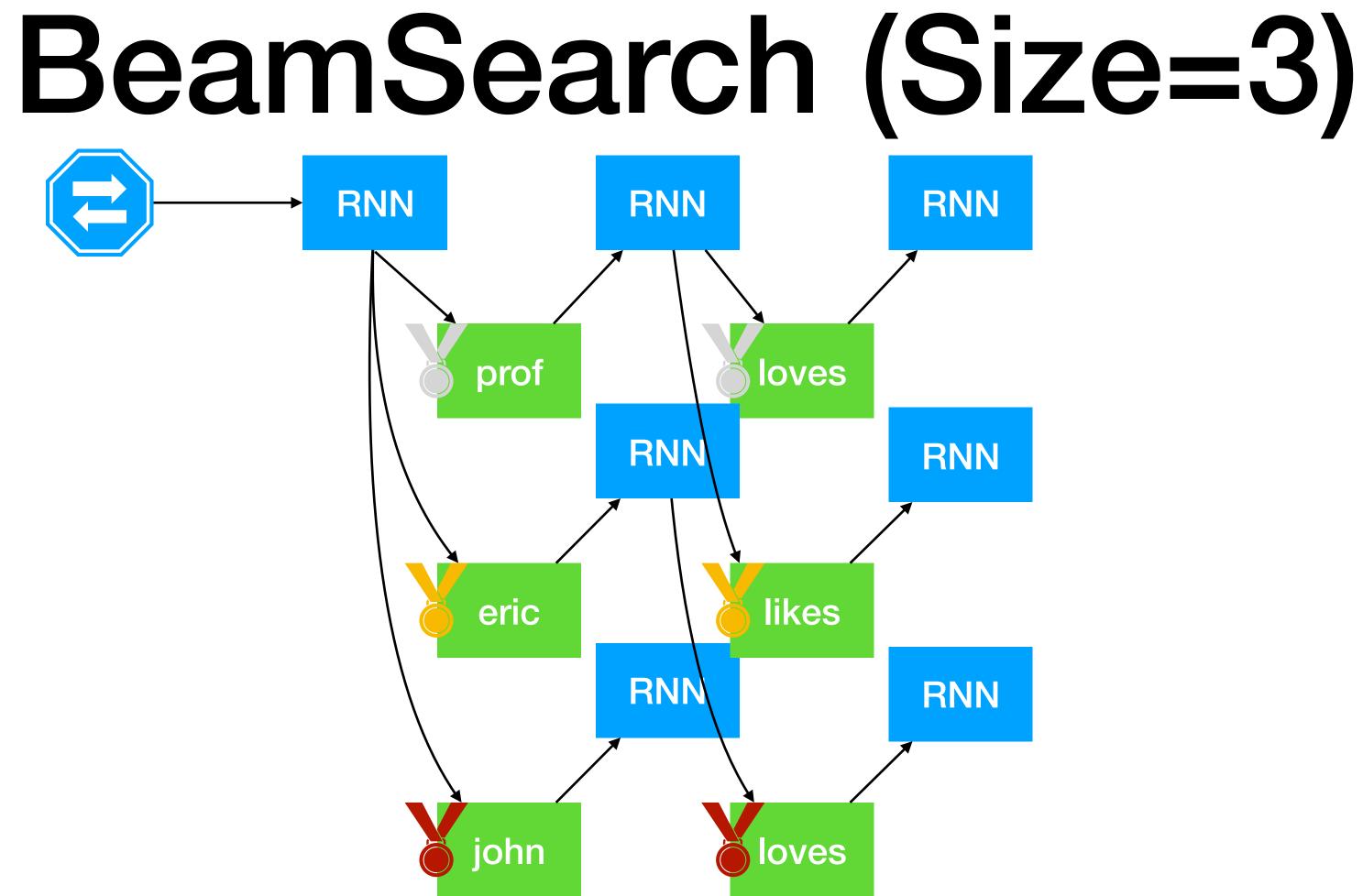


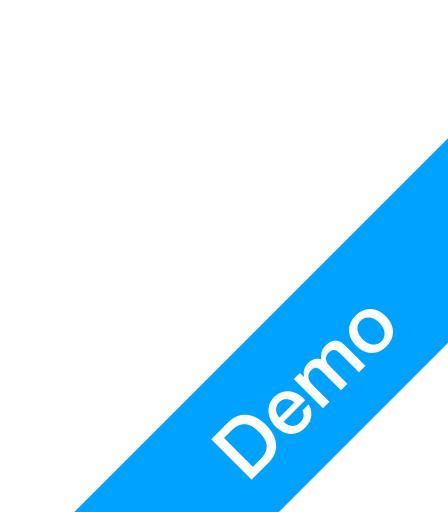


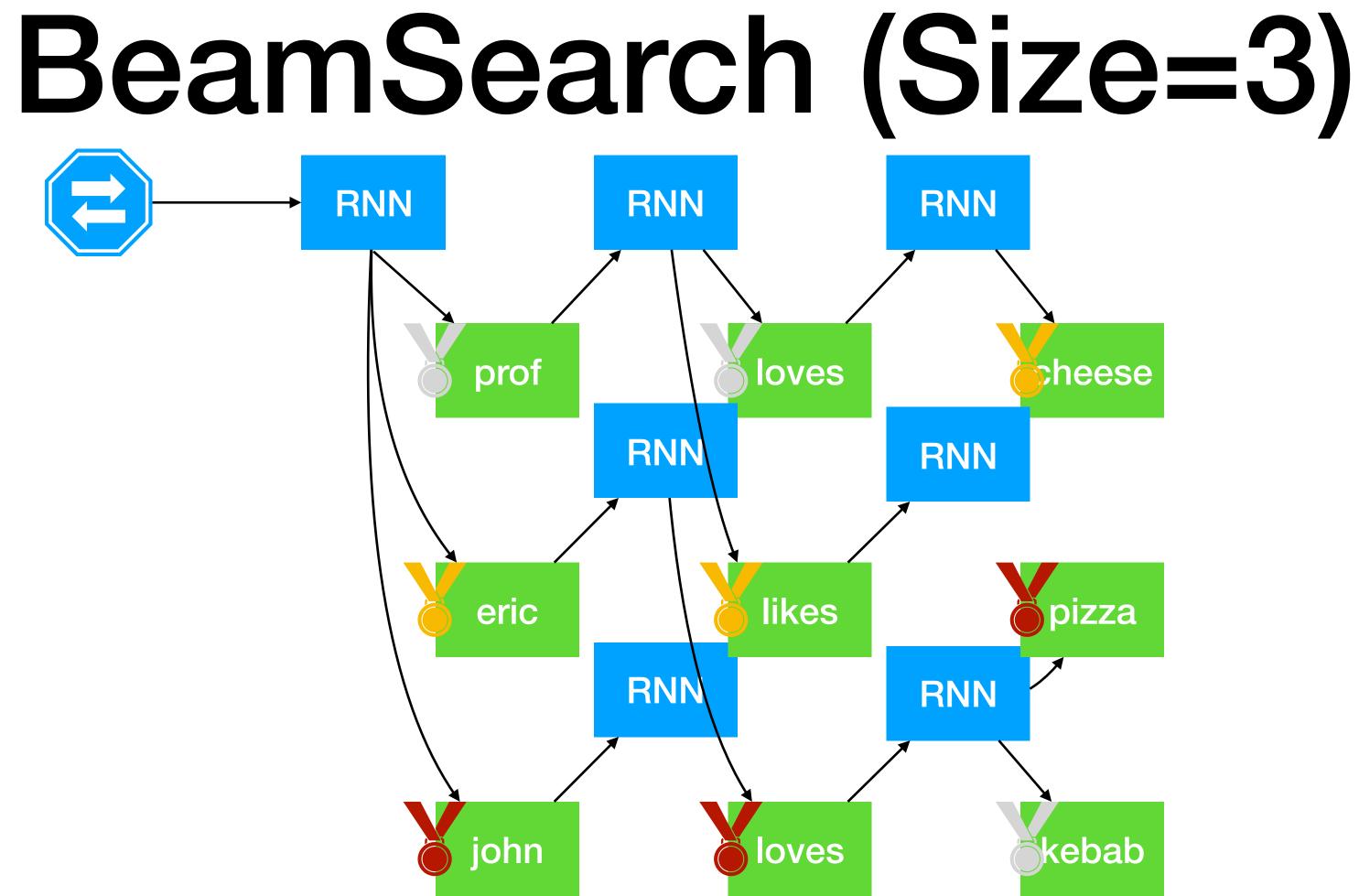


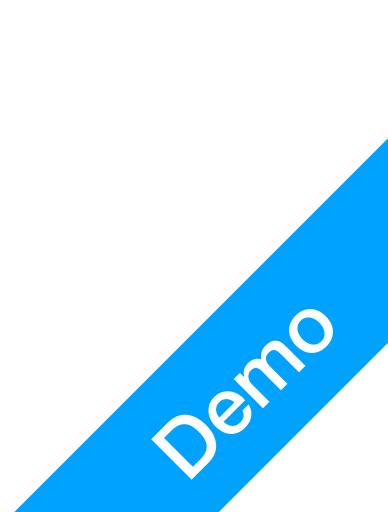


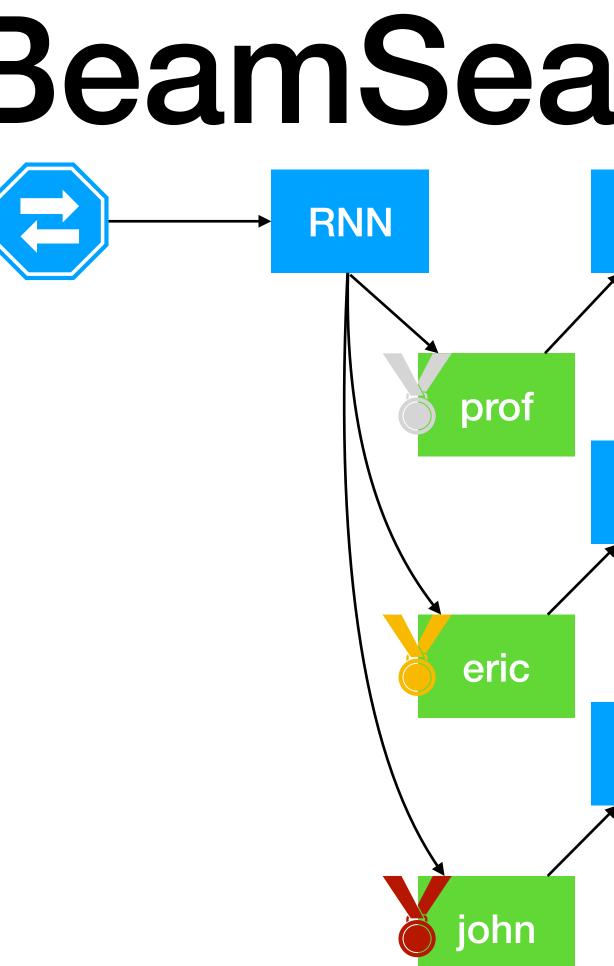




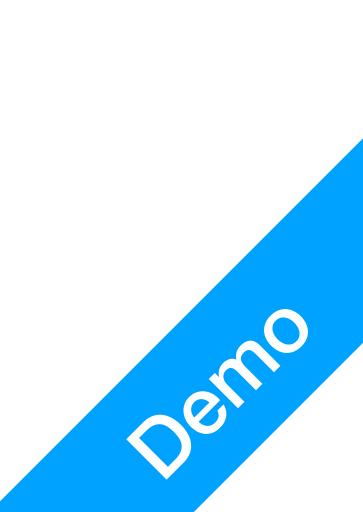


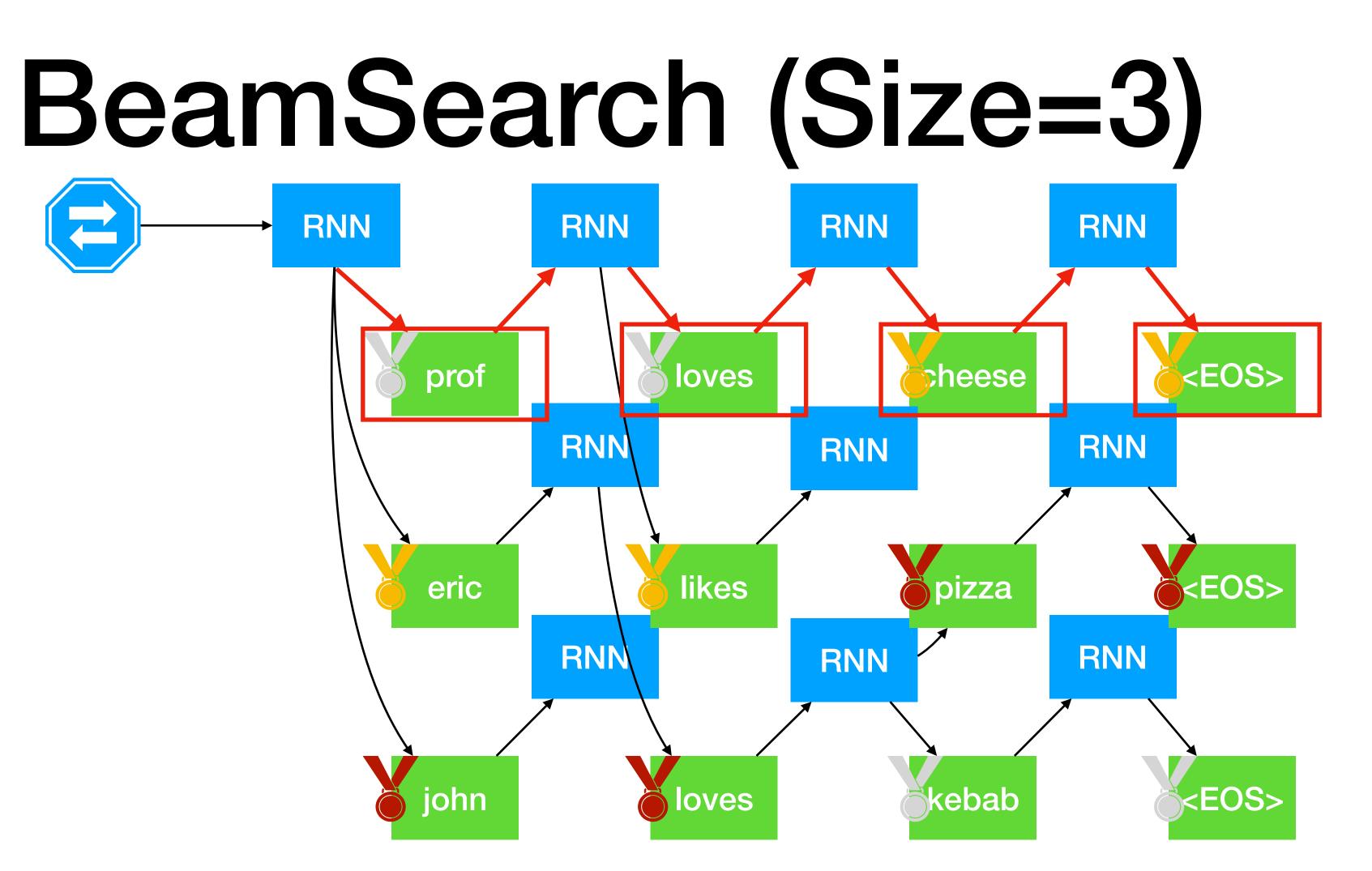


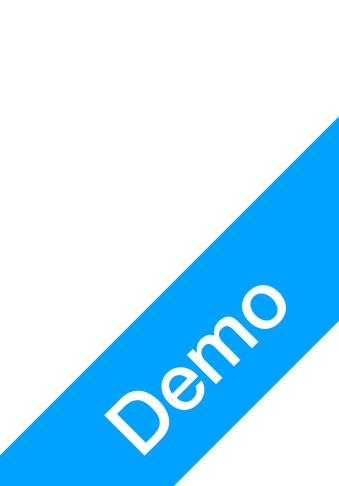


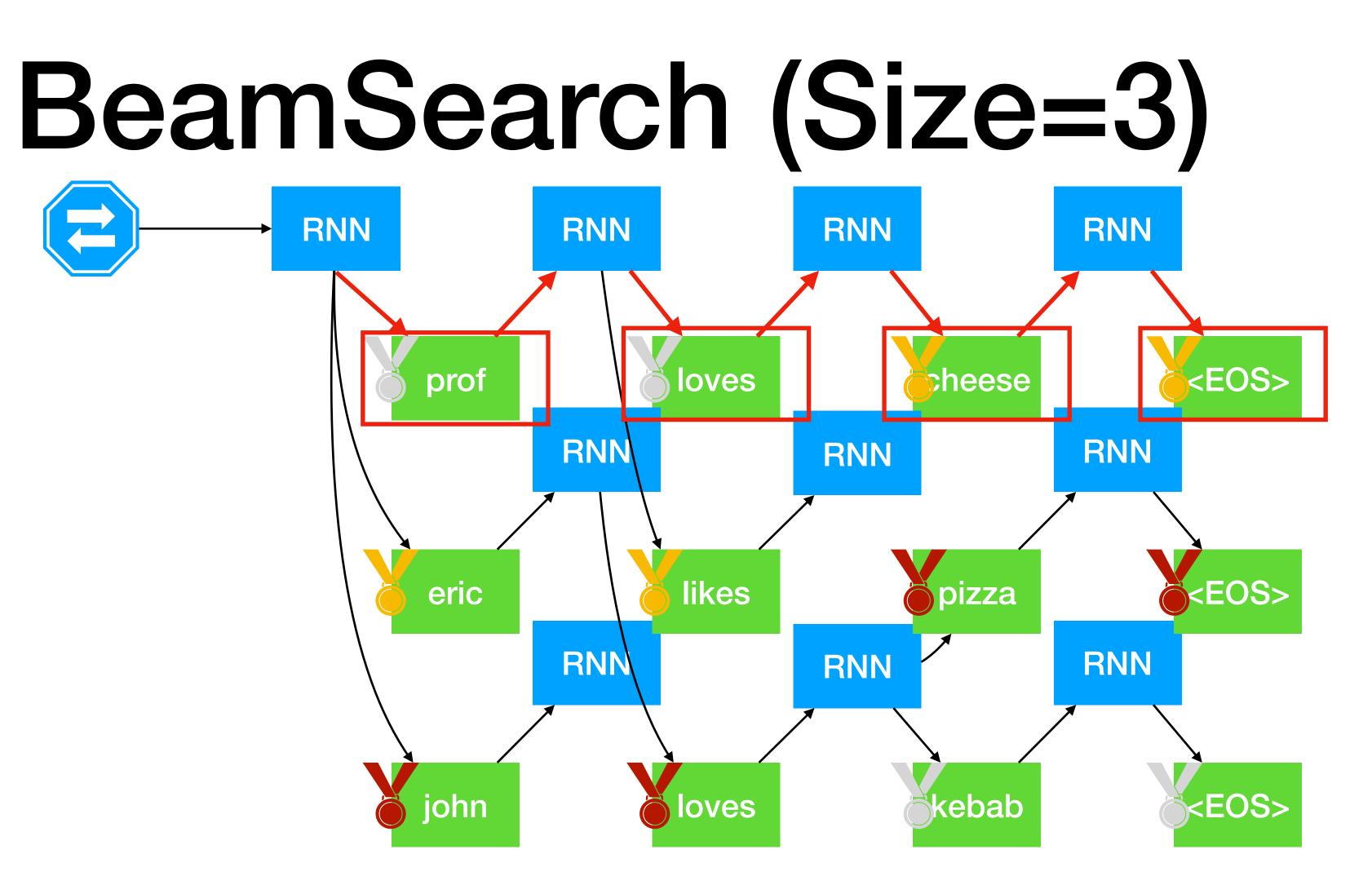


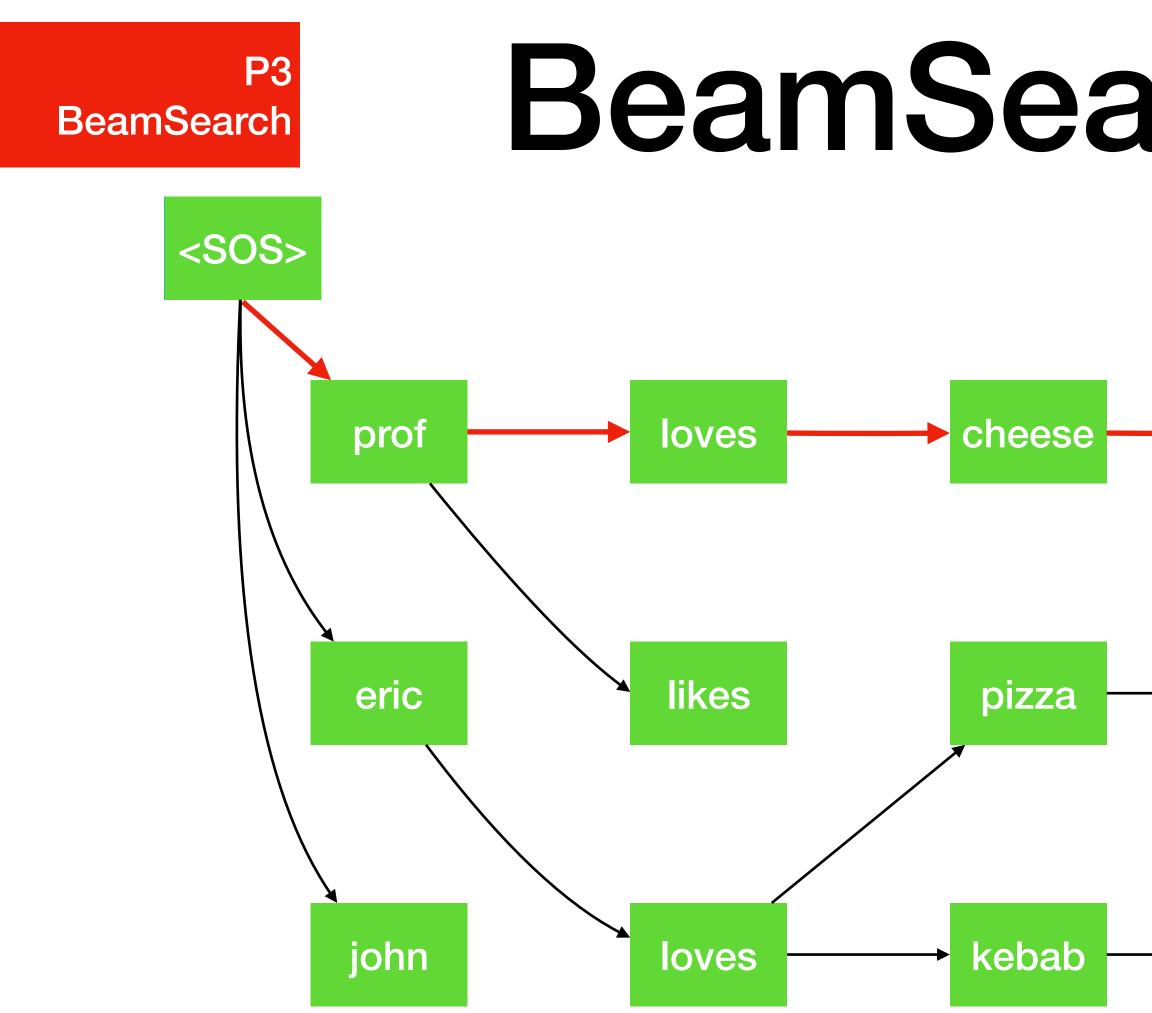
BeamSearch (Size=3) RNN RNN RNN <EOS> cheese loves RNN RNN RNN pizza <EOS> likes RNN RNN RNN <EOS> kebab loves

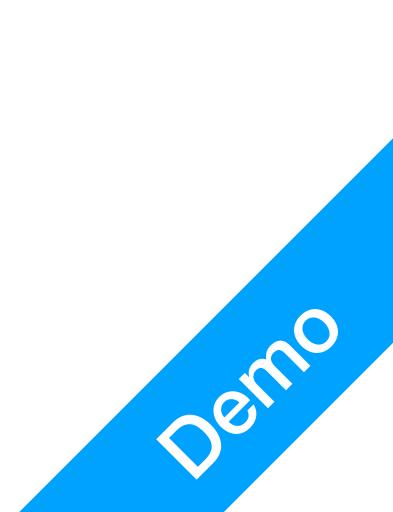




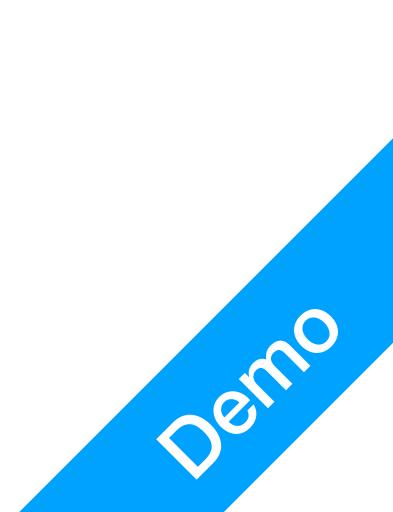


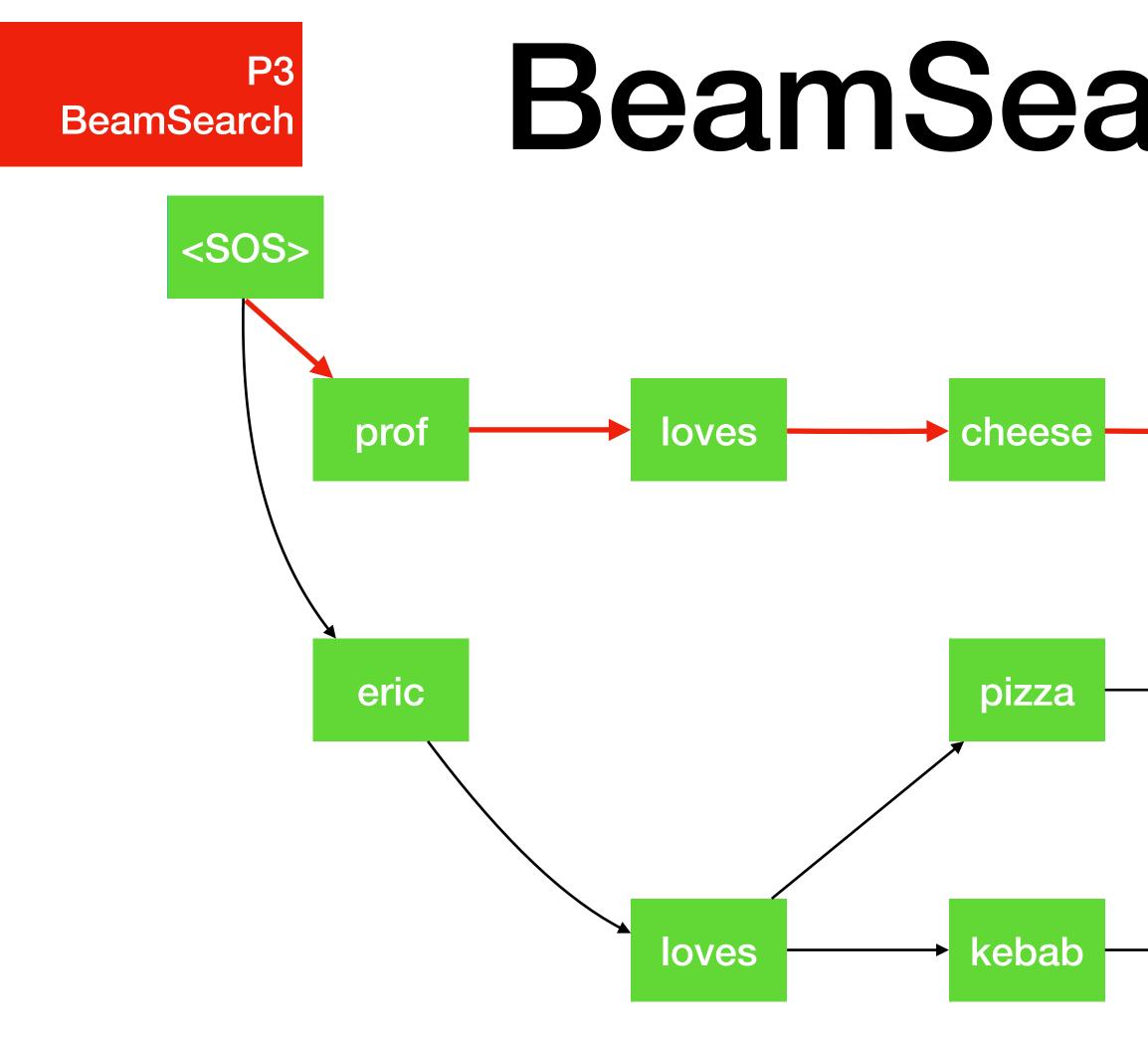






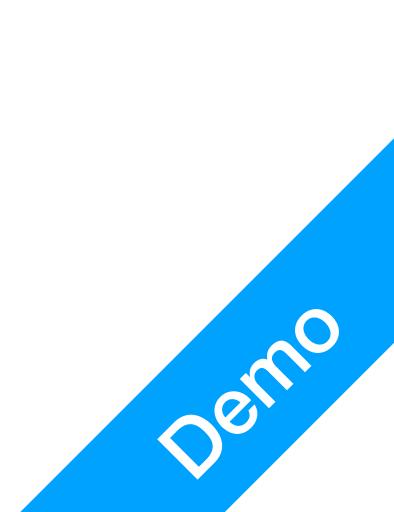


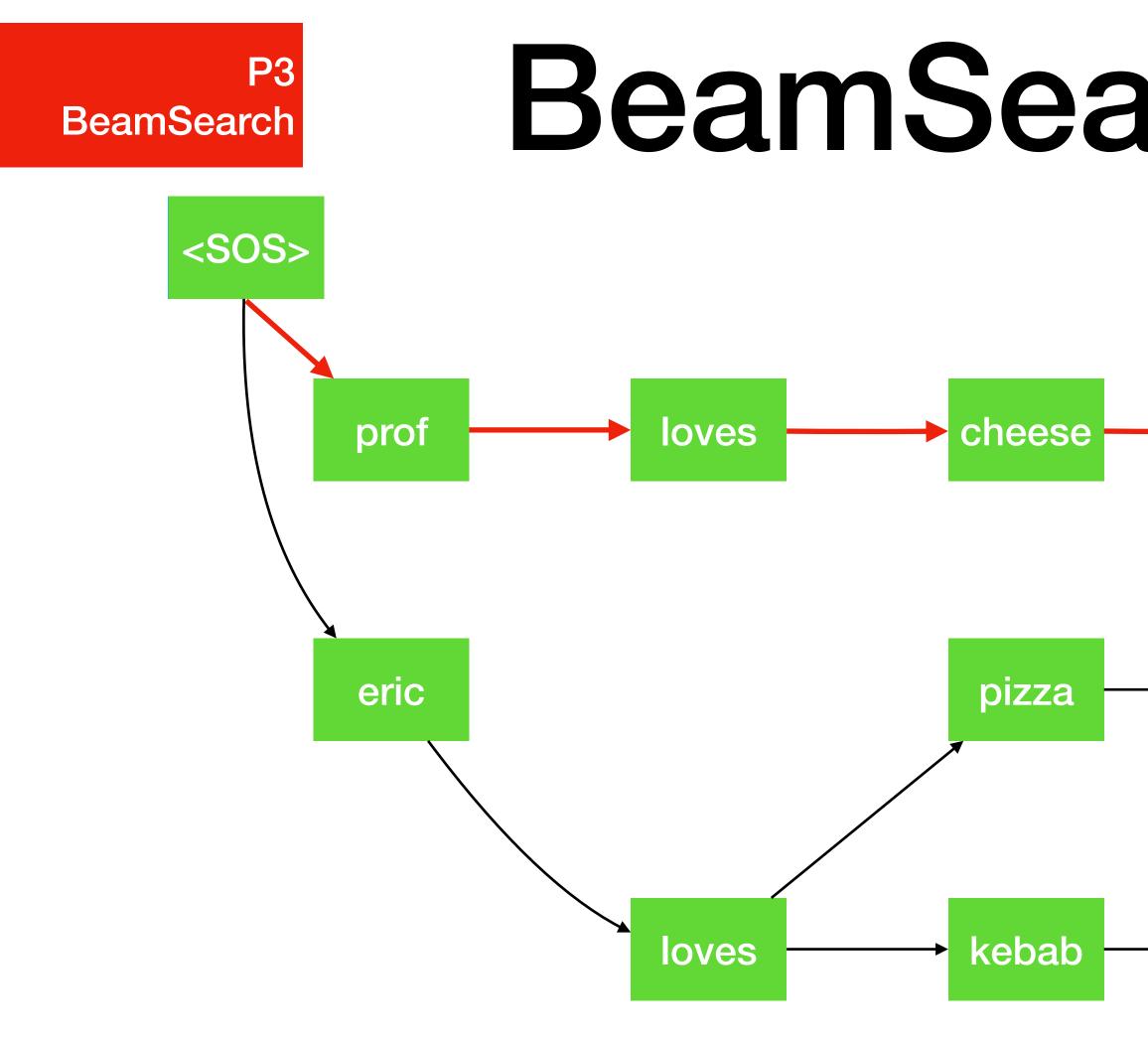




BeamSearch (Size=3)

<EOS> $P(E \mid F)$





BeamSearch (Size=3)

$\langle EOS \rangle P('prof loves cheese \langle EOS \rangle' | F)$

P('eric loves pizza < EOS>'|F)

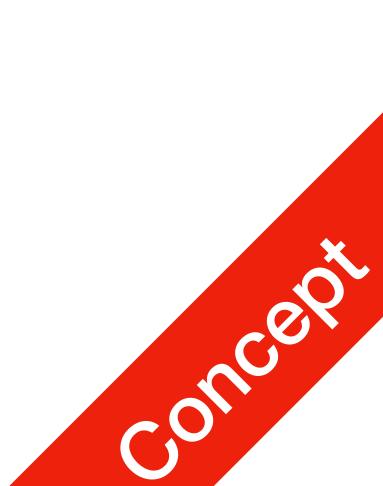
<EOS> P('eric loves kebab < EOS>'|F)

BeamSearch

- Consider multiple hypotheses at ea programme on a tree
- Consider multiple complete translation search space from $|V_E|^m$ to

• Consider multiple hypotheses at each step *t*, formulate decoding as a search

• Consider multiple complete translation hypotheses, but reduces the total



BeamSearch

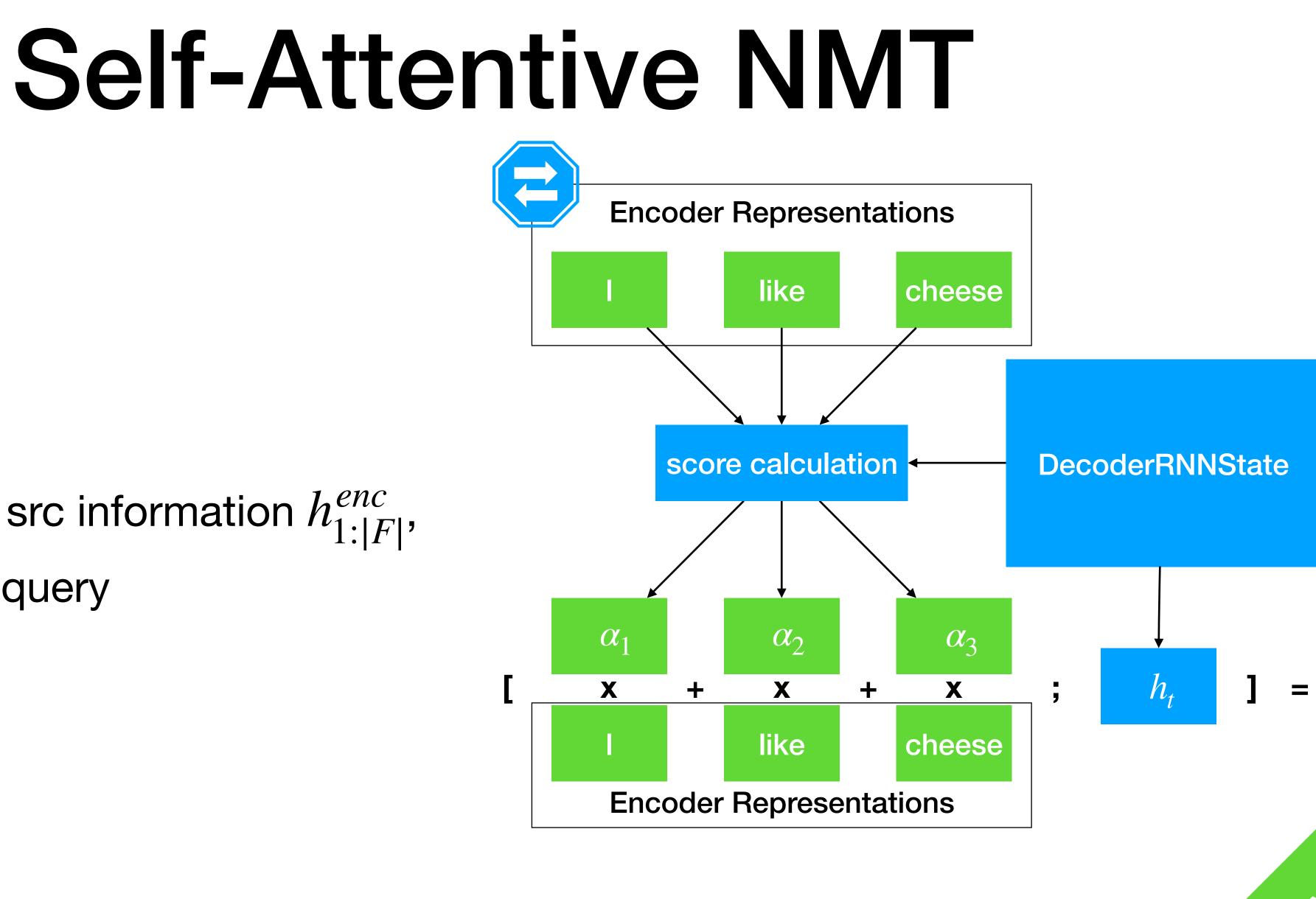
- programme on a tree
- search space from $|V_E|^m$ to batchSize $\times m$

• Consider multiple hypotheses at each step t, formulate decoding as a search

Consider multiple complete translation hypotheses, but reduces the total



• Aggregating src information $h_{1:|F|}^{enc}$, with h_t^{dec} as query



Self-Attentive NMT

Extra1 Transformer

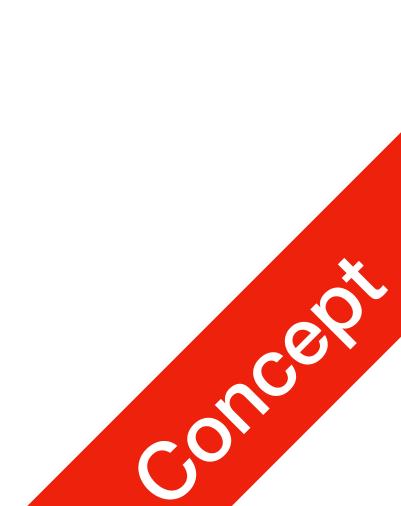
- Aggregating src information $h_{1:|F|}^{enc}$, with h_t^{dec} as query
- \overrightarrow{h}^{enc} : aggregating information $f_{<i}$, with f_i as query
- \overleftarrow{h}^{enc} : aggregating information $f_{>i}$, with f_i as query
- Can we replace the RNN with attention?

Self-Attentive NMT

- Transformer¹
 - Encoder-Decoder

 - Multi-headed attention blocks*
 - read the paper for more information

No RNN -> all RNNs in Seq2Seq replaced by identical self-attention blocks



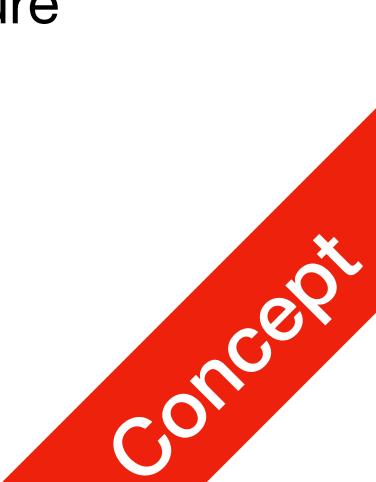
Self-Attentive NMT

- Does everything Seq2Seq does
- BERT: Bidirectional Encoder Representation of Transformer

- 1. CL2017244 [Vaswani et al.] Attention Is All You Need
- 2. CL2018460 [Devlin et al.] BERT Pre-training of Deep Bidirectional Transformers for Language Understanding

Beyond NMT

- NMT weaknesses
 - Longer src sentences -> SMT does it better, augment attention?
 - Growing lexicon/Terminologies -> Pointer-based Dictionary Fusion
 - Sensitive domain -> offline computing, human-involved system to ensure accuracy
 - Mobile Platform deployment -> model compression



Beyond NMT

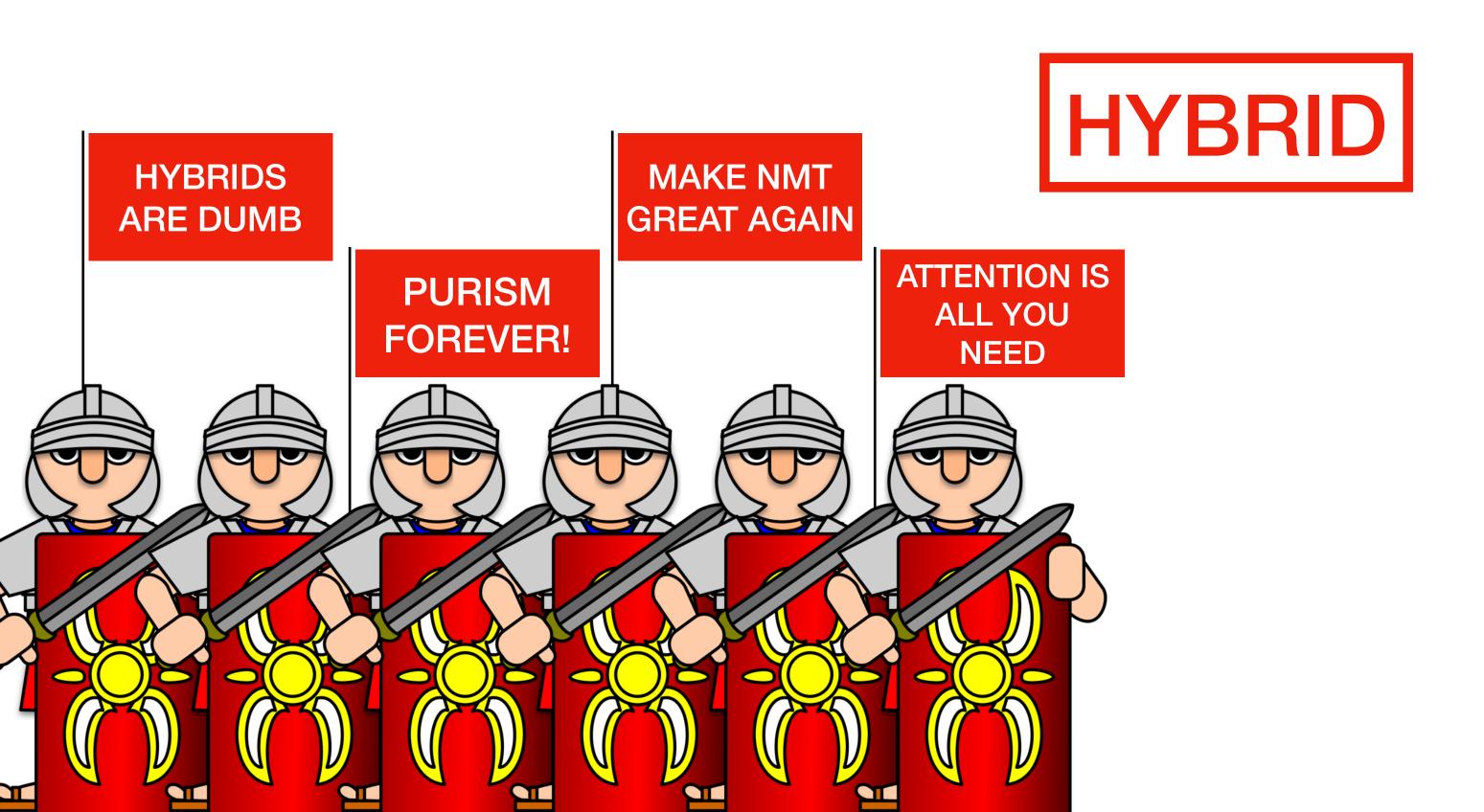
- NMT weaknesses
 - Longer src sentences -> SMT does it better, augment attention?

 - accuracy
 - Mobile Platform deployment -> model compression

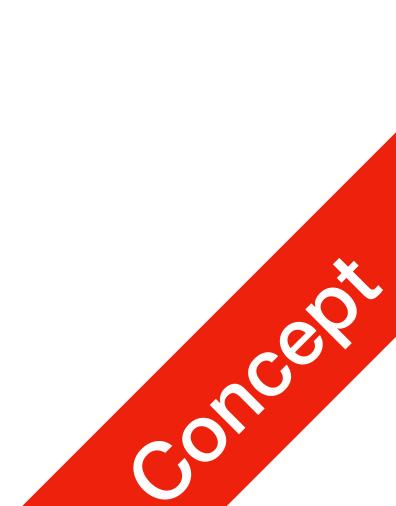
Growing lexicon/Terminolog HYBR D pased Dictionary Fusion

• Sensitive domain -> offline computing, human-involved system to ensure

Extra2 **Beyond NMT**



Beyond NMT



My work here is done, thank you.