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Overview

 Focus: Neural Machine Translation
e Architecture: Encoder-Decoder Neural Network
* Main Story:
e Extension to Seg2Seq: Copy Mechanism
 Extension to Seg2Seq: Ensemble
e Extension to Seg2Seq: BeamSearch
e [Extra] Beyond Seg2Seq: Attention is all you need

e [Extra] Beyond NMT
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Attention

e Why does Attention work?
e \What is in the context vector? _ enc 1.dec
score, ; = f(h", h;/°)

e What is in a? a, = softmax(score,)
—_ enc
context, = 2 a,

l

e lt's alignment’ !
e |earns to refer to useful information in src?

e similar to human attention: we pay attention to whatever is needed

1. CL2015008 [Bahdanau et al.] Neural Machine Translation by Jointly Learning to Align and Translate
2. CL2017342 [Ghader et Monz] What does Attention in Neural Machine Translation Pay Attention to?



¥ Common Problems of NMT

e Qut-of-Vocabulary (OOV) Problem; Rare word problem
e Frequent word are translated correctly, rare words are not

e |n any corpus, word frequencies are exponentially unbalanced
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Frequency Rank
e rare word are exponentially less frequent than frequent words

e e.0.in HW4, 45%|65% (srcltgt) of the unique words occur once

1. https://en.wikipedia.org/wiki/Zipf%27s_law



¥ Common Problems of NMT

e Qut-of-Vocabulary (OOV) Problem; Rare word problem

e Frequent word are translated correctly, rare words are not

e |n any corpus, word frequencies are exponentially unbalanced
e Under translation

e Crucial information are left untranslated; premature generation
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e Under translation

e Crucial information are left untranslated; premature generation
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¥ Common Problems of NMT

e Qut-of-Vocabulary (OOV) Problem; Rare word problem

e Frequent word are translated correctly, rare words are not

e |n any corpus, word frequencies are exponentially unbalanced
e Under translation

e Crucial information are left untranslated; premature generation



¥ Common Problems of NMT

e Qut-of-Vocabulary (OOV) Problem; Rare word problem

e Copy Mechanisms

e Char-level Encoder (oops for logogram, e.g. Chinese)
e Under translation

e Ensemble

e Beam search

e Coverage models



Copy Mechanism
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1. CL2015015 [Luong et al.] Addressing the Rare Word Problem in Neural Machine Translation
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Copy Mechanism

1. CL2015015 [Luong et al.] Addressing the Rare Word Problem in Neural Machine Translation



Copy Mechanism

e Sees <UNK> at step ¢

e |looks at attention weight o,

e replace <UNK> with the source word

fargmaxiat,,-

1. CL2015015 [Luong et al.] Addressing the Rare Word Problem in Neural Machine Translation



*Pointer-Generator
Copy Mechanism

1. CL2016032 [Gulcehre et al.] Pointing the Unknown Words



*Pointer-Generator
Copy Mechanism

y
* binary classifier switch
i * use decoder output
e use copy mechanism
______________________________________

1. CL2016032 [Gulcehre et al.] Pointing the Unknown Words



*Pointer-Generator
Copy Mechanism

» Sees <UNK> at step ¢, or pg([h%“; context,]) < 0.5

e looks at attention weight a;,

» replace <UNK> with the source word f,.omax o

1. CL2016032 [Gulcehre et al.] Pointing the Unknown Words



*Pointer-Based
Dictionary Fusion

P1
Copy

» Sees <UNK> at step £, or pg([h%; context,]) < 0.5

e |looks at attention weight a,

e replace <UNK> with translation of the source word

dict(f,

argmaxiat,l-)

1. CL2019331 [Gu et al.] Pointer-based Fusion of Bilingual Lexicons into Neural Machine Translation



Ensemble

e Similar to voting mechanism, but with probabilities

e multiple models of different parameters (usually from different checkpoints
of the same training instance)

e use the output with the highest probability across all models
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BeamSearch

e Consider multiple hypothesis at each step ¢, formulate decoding as a search
programme on a tree
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BeamSearch (Size=3)
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BeamSearch (Size=3)
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BeamSearch (Size=3)

M——»P('prof loves cheese <EOS>' | F)

P('eric loves pizza <EOS>' | F)

»fP('eric loves kebab <EOS>' | F)

Output: "prof loves cheese"



BeamSearch

e Consider multiple hypotheses at each step 7, formulate decoding as a search
programme on a tree

e Consider multiple complete translation hypotheses, but reduces the total
search space from |V |" to




BeamSearch

e Consider multiple hypotheses at each step 7, formulate decoding as a search
programme on a tree

e Consider multiple complete translation hypotheses, but reduces the total
search space from | V,.|" to batchSize X m




Self-Attentive NMT
® Encoder Representations
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e Aggregating src information L F|?

with 19 as query

Encoder Representations




Self-Attentive NMT

« Aggregating src information hf’/‘l;‘ with htdec as query

é
e h“"“: aggregating information f_;, with f; as query

&
e h“"“: aggregating information f. ;, with f. as query

e Can we replace the RNN with attention?



Self-Attentive NMT

 Transformer?
e Encoder-Decoder
e No RNN -> all RNNs in Seq2Seq replaced by identical self-attention blocks
 Multi-headed attention blocks™

e read the paper for more information

1. CL2017244 [Vaswani et al.] Attention Is All You Need



Self-Attentive NMT

e Does everything Seg2Seq does

e BERT: Bidirectional Encoder Representation of Transformer

1. CL2017244 [Vaswani et al.] Attention Is All You Need
2. CL2018460 [Devlin et al.] BERT Pre-training of Deep Bidirectional Transformers for Language Understanding




Beyond NMT

e NMT weaknesses
e |onger src sentences -> SMT does it better, augment attention?
e Growing lexicon/Terminologies -> Pointer-based Dictionary Fusion

e Sensitive domain -> offline computing, human-involved system to ensure
accuracy

e Mobile Platform deployment -> model compression




Beyond NMT

e NMT weaknesses

e |onger src sentences -> SMT does it better, augment attention?

» Growing lexicon/Terminologl HY B R|I) based Dictionary Fusion

e Sensitive domain -> offline computing, human-involved system to ensure
accuracy

e Mobile Platform deployment -> model compression




Beyond NMT
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My work here is done, thank you.



