
#04-2024-1007-205 CSCI 250

Jetic Gū
1. Handwritten submissions and proprietary formats (e.g. Pages or MS Word) will not be graded.
2. Mathematical expressions must be written entirely using LaTeX, otherwise 50%-100% of marks will be

deducted.
3. Circuits must be tested. Untested circuits will receive 0.
Submission File structure:

submission.zip
 - asm/
 	 - asm_arm16.py // if you are using python
 	 - asm_arm16.cpp // if you are using C++
 	 - makefile // if you are using C++
 - main.cct // this will be your main computer
 - csci250.clf // your library
 - cct/
 - any other related circuit files*
 - README.md // A list of all files in the sub-
mission, and what they are for

Todo.

Lab 5 (under construction)

ARM16 Specification

1. Introduction
This document details the specification of a ARM16 CPU, simplified from the 32bit ARMv7 Thumb specifica-

tion.

2. Instruction list
ARM doesn’t have fixed lengths for OPCODE. In the context of our ARM16, all instructions are 16bit. Briefly,

the different kinds of operations could be determined from the first few digits of the instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE Other operands

Opcode Instruction Encoding

00xxxx Register/Immediate: Arithmetic Operations AU operations and CMP

010000 Register: Logical Operations LU operations

010001 Special Register data instructions* Don’t care

01001x Memory Load: from Literal Pool (PC with Offset) MEM

Opcode

Page ￼ of ￼1 9

#04-2024-1007-205 CSCI 250

1. Register/Immediate: Arithmetic Operations:
Shifting (not required):

Special Shifting (MOV implemented using Logic Shift Left):

Addition/Subtraction format:

0101xx
011xxx
100xxx

Memory Load/Store (Single address) MEM

1010XX Relative Address calculation* Don’t care

1011xx Misc* Don’t care

1100xx Memory Load/Store (Blocks)* Don’t care

1101xx Conditional branch: if-triggered subroutine/goto B

11100x Unconditional branch: jump B

11111x Do nothing Idle

Instruction EncodingOpcode

OP Instruction Assembly See

00000 Logical Shift Left - Don’t care

00001 Logical Shift Right - Don’t care

00010 Arithmetic Shift Right - Don’t care

OP Md Instruction Assembly See

00000 00 MOV MOV <Rd>, <Rm> Rd_data <=
Rm_data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 Rm Rd

OP Md Instruction Assembly See

00011 00 Addition ADDS <Rd>, <Rn>, <Rm> Rd_data <=
Rn_data + Rm_data

00011 01 Subtraction SUBS <Rd>, <Rn>, <Rm> Rd_data <=
Rn_data - Rm_data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Mode (Md) Rm Rn Rd

Page ￼ of ￼2 9

#04-2024-1007-205 CSCI 250

Addition/Subtraction with Imm3 format:

MOV:

CMP (Compare), Immediate:

Addition/Subtraction, with Imm8 format:

2. Register: Logical Operations
Logical operations all starts with 010000.

OP Md Instruction Assembly See

00011 10 Addition (Immediate) ADDS <Rd>, <Rn>, #<imm3> Rd_data <=
Rn_data + Imm(2 downto 0)

00011 11 Subtraction (Imme-
diate)

SUBS <Rd>, <Rn>, #<imm3> Rd_data <=
Rn_data - Imm(2 downto 0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Mode (Md) Imm3 Rn Rd

OP Instruction Assembly See

00100 Move MOVS <Rd>, #<imm8> Rd_data <= Imm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rd Imm8

OP Instruction Assembly See

00101 Compare CMP <Rn>, #<imm8> CMP Rn_data, Imm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 Rn Imm8

OP Instruction Assembly See

00110 Add 8bits of immediate ADDS <Rdn>, #<imm8> Rdn_data <=
Rdn_data + Imm

00111 Unsigned Subtract
8bits of immediate

SUBS <Rdn>, #<imm8> Rdn_data <=
Rdn_data - Imm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 X Rdn Imm8

Page ￼ of ￼3 9

#04-2024-1007-205 CSCI 250

3. Memory Load: from Literal Pool (PC with Offset)
This category has 1 instruction.

OpA OpB Instruction Assembly See

010000 0000 Bitwise AND ANDS <Rdn>,
<Rm>

Rdn_data <=
Rdn_data and
Rm_data

010000 0001 Bitwise Exclusive OR EORS <Rdn>,
<Rm>

Rdn_data <=
Rdn_data xor
Rm_data

010000 0010 Logical Shift Left - Don’t care

010000 0011 Logical Shift Right - Don’t care

010000 0100 Arithmetic Shift Right - Don’t care

010000 0101 Add with Carry - Don’t care

010000 0110 Subtract with Carry - Don’t care

010000 0111 Rotate Right - Don’t care

010000 1000 Test - Don’t care

010000 1001 Reverse Subtract from 0 - Don’t care

010000 1010 Compare Registers CMP <Rn>,
<Rm>

CMP Rn_data,
Rm_data

010000 1011 Compare Negative - Don’t care

010000 1100 Bitwise OR ORRS <Rdn>,
<Rm>

Rdn_data <=
Rdn_data or
Rm_data

010000 1101 Multiply Two Registers - Don’t care

010000 1110 Bitwise Bit Clear - Don’t care

010000 1111 Bitwise NOT MVNS <Rd>,
<Rm>

Rd_data <=
not Rm_data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 Opcode B Rm Rdn (Rd, Rn)

Opcode Instruction Assembly See

01001 Calculates an address from PC (R7), apply
immediate offset and save it in target register

LDR <Rt>,
#<Imm8>

Rt_data <=
MEM<PC_data + Imm>

Page ￼ of ￼4 9

#04-2024-1007-205 CSCI 250

4. Memory Load/Store (Single address)
This category has 4 instructions that needs to be included.

OpA == 0111, 1000, 1001 are not required hence can be treated as don’t care.

5. Conditional branch: if-triggered subroutine/goto

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rt Imm8

OpA OpB Instruction Assembly See

0101 000 Store Register STR <Rt>, [<Rn>,
<Rm>]

MEM<Rn_data + Rm_data>
<= Rt_data

0101 001 Store Register Halfword Don’t care

0101 010 Store Register Byte - Don’t care

0101 011 Load Register Signed Byte - Don’t care

0101 100 Load Register LDR <Rt>, [<Rn>,
<Rm>]

Rt_data <=
MEM<Rn_data + Rm_data>

0101 101 Load Register Halfword - Don’t care

0101 110 Load Register Byte - Don’t care

0101 111 Load Register Signed Halfword - Don’t care

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 OpB Rm Rn Rt

OpA OpB Instruction Assembly See

0110 0 Store Register (Immediate) STR <Rt>, [<Rn>,
#<imm5>]

MEM<Rn_data + Imm>
<= Rt_data

0110 1 Load Register (Immediate) LDR <Rt>, [<Rn>,
#<imm5>]

Rt_data <=
MEM<Rn_data + Imm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 OpB Imm5 Rn Rt

Op Instruction Assembly See

1101 Conditional Branch B.cond <label>
(<#imm8>)

If condition is met,
PC <= Imm

Page ￼ of ￼5 9

#04-2024-1007-205 CSCI 250

6. Unconditional branch: jump

7. Idle (Do nothing)
The CPU does nothing when the instruction is idle.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 cond Imm8

Op Instruction Assembly See

11100 Unconditional Branch B <label>
(<#imm11>)

PC <= Imm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 Imm11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 don’t care

Page ￼ of ￼6 9

#04-2024-1007-205 CSCI 250

3. Separation of Main Memory and Instruction Cache
The ARM16 CPU mentioned here will have its main memory separated from the instruction cache. I’ve decid-

ed that it’s more efficient for us to implement the CPU like this, without having to deal with the nuances of im-

plementing a complex hardware cache.

The Main Memory should be connected to the datapath through a single D16 bus db, where the direction of

information and whether information from db should be stored in the main memory is also controlled using

db_dir. The memory module should be 16bit addressable (every word is 16bit, every address retrieves 16bit

of data), with 16bits for address.

The instruction cache is a read-only memory unit. You can use the same specification for your main memory

module, or an ROM unit. The choice is yours. The instruction cache should receive address from PC (R7 reg-

ister) directly.

4. Register Array
Your CPU needs to contain 8 general-purpose registers. Among the 8 GPRs, R0-R6 do not have special roles,

and R7 is your Programme Counter. Your register array should be implemented such that at every CLK when

the whole array has Rw==1, if R7 is not receiving a new value from the ALU or db, R7’s value should increase

by 1 on its own.

5. Pipeline Requirements
Your ARM16 CPU can be designed with pipeline. The standard pipeline that can be followed here is the clas-

sic 3 stage model:

1. Fetch

A new instruction is fetched into the Instruction Register
2. Decode

Your instruction decoder takes the value from the Instruction Register as input, then gener-
ates the appropriate Control Word (of your design) to your ALU, your mem_ctrl, your db_ctrl,
etc., and store the control word in a special Control Word register. Retrieved register data
may also be stored in the Control Word register.

3. Execute

Your ALU, mem_ctrl, and db_ctrl executes the instruction according to your control word, then
updates the register array accordingly.

Important: if the instruction is Branch (B), or any instructions that might require stalling, to successfully im-

plement the pipeline, you must implement a mechanism to stall individual stages as they become necessary.

Notably:

Page ￼ of ￼7 9

#04-2024-1007-205 CSCI 250

1. stalling for branching: all instructions after a B instruction must be stalled before continuing, allowing

the potentially new PC to be correctly calculated and loaded.

2. stalling for register values: if the instruction currently being executed needs to change the content in

the register array (excluding PC which requires a B instruction to change it’s value from the compiler/

assembler level), the Decoding of the next instruction should be stalled, to prevent incorrect values

from the register array from being retrieved.

3. alternatively to point 2, if you can modify the pipeline to get rid of the necessity of doing so, you may

also do so.

6. Assembler Requirement
6.1 Development Target
Our development target is your ARM16 CPU computer, so your assembler should output in a way such that it

can be loaded into the instruction cache of your ARM16 CPU.

Your assembler may be programmed in Python or C++. If Python, name it as asm_arm16.py. If C++, name it

as asm_arm16.cpp, and include a makefile.

The assembler will need to be a programme that can take 1 mandatory argument and 1 optional. e.g. in

Python:

python3 asm_arm16.py SRC_CODE [-o OUT_FILE]

SRC_CODE here will be a source code file written in assembly. OUT_FILE is the output filename, and should

be defaulted to ./a.out unless the value is provided.

6.2 Directives and Symbols
You need only to support the .global directive. Your assembler should also check if _main is declared using

.global and defined.

Users of your assembler should be able to write programmes with functions. Functions are declared the same

way as _main, but doesn’t need to involve .global.

Symbols of Functions need to fulfil basic requirements for variable names for other programming languages

such as python. Exception being the register names. In ARM16, we use x0 - x6 as register names. Optionally,

users may decide to use uppercase for register names or Linux style register names (r0 - r6), whether you

should support it is up to you.

Users may also decide to use literal numbers, you will need to support decimal, hexadecimal, and optionally

binary literals. The detailed formats can be found in LS17.

Page ￼ of ￼8 9

#04-2024-1007-205 CSCI 250

6.3 Function Calls

Your users may decide to declare functions and use B/BL to call these functions. You will need to support this.

Your assembler should make sure B/BL is the only way for the programmer to change PC’s value, so you

should prevent PC from being changed by other instructions, including by the programmer using MOV.

Your assembler should also implement BL. For our ARM16, this is done by:

1. Saving current PC to R6 (LR: Link Register) using MOV

2. Use B to branch to target function, after its finished execution,

3. Use MOV to go back to original PC stored in R6 (e.g. main function)

You are not required to support recursive function calls, you can assume only in _main will other functions be

called. Notice also that users may decide to use Symbols/Labels for their functions, so your assembler will

need to figure out the appropriate memory addresses for these functions’ instructions in the main memory.

7. Grading
Students who have successfully implemented a pipeline, in addition to correct submission of an assembler will

receive A+ in this course, without the need of attending the final exam.

Otherwise, the grading of this Lab will be divided into the following:

1. Successful implementation of an Instruction Decoder (2pt)

2. Successful implementation of the ALU, by assembling address calculation, the Arithmetic Unit, the Logical

Unit, and CMP module, connecting it to the main memory module and show that it works (1pt)

3. Successful implementation of the Instruction Cache, and register array (1pt)

4. Successful integration of the above 3 (3pt), by way of testing the implementation with a programme as-

sembled by the reference assembler.

5. Correctly implemented the assembler as required (3pt).

1. 1.5pt given to an executable assembler that can perform basic arithmetics and register microopera-

tions.

2. 1.5pt given to correct implementation of B/BL instruction, function call, function declaration using la-

bels, and necessary checks to prevent PC from being changed by the programmer using other in-

structions.

Page ￼ of ￼9 9

	ARM16 Specification

