
26.11.24 17:59

CSCI 250
Introduction to Computer Organisation

Lecture 5: Compiler Basics III

Jetic Gū

2024 Fall Semester (S3)

Overview

• Architecture: von Neumann

• Textbook: CO: 4.5

• Core Ideas:

1. Assembler Requirement

P0
XXXXXXX

P1
ASM

Lab 5
Assembler Requirement

Assembler Directives

• Your assembler will support 1 directive, .global

• This line could appear anywhere in the assembly code, except for within the
definition of a symbol

• Main function must be defined using .global as _main

La
b

P0
XXXXXXX

P1
ASM

Symbols
• Your assembler will the definition of symbols

• _main is mandatory

• Your assembler should also support other symbols, so your programmer can
define other functions. Your programmer could try to name the symbol anything,
but it has to meet the requirement for variable names for other programming
languages

• Exception: x0-x6 or X0-X6 should be reserved for register names

• Literal numbers need to be supported, including Hex and Bin. See LS17 for
detail.

La
b

P0
XXXXXXX

P1
ASM

B Instruction
• B/BL is the only way for the programmer to change PC (R7)’s value 

Your assembler should prevent PC’s value from being changed by other
instructions, including by the programmer using MOV

• BL is not in the list of instructions that your CPU need to support, however
your assembler will support it, by

• Saving current PC to R6 (LR: Link Register) using MOV

• Use B to branch to target function, after its finished execution,

• Use MOV to go back to original PC stored in R6 (e.g. main function)
La

b

P0
XXXXXXX

P1
ASM

Assembler Output

• Our development target is your ARM16 CPU computer, so your assembler should output
in a way such that it can be loaded into the instruction cache of your ARM16 CPU.

• Your assembler will take 1 mandatory argument for the input filename (e.g.
programme.s), and 1 optional flag -o for specifying the output filename

• Your assembler can be programmed using Python3 or C++

• How do you test it? You need to be able to copy the assembler’s output to the instruction
cache, and see it running.

La
b

P0
XXXXXXX

P1
ASM

$ python3 asm_arm16.py programme.s -o programme.ic
$./asm_arm16 programme.s -o programme.ic

