
15.10.24 15:22

CSCI 250 
Introduction to Computer Organisation 

Lecture 3: CPU Architecture I

Jetic Gū

2024 Fall Semester (S3)



Overview

• Architecture: von Neumann


• Textbook: LCD: 9.7; CO: 2.1


• Core Ideas:


1. Review


2. Instructions



Datapath Review

P1 
Review



Example Datapath Architecture

Rev
iew

Register Array (Reg)

REG AX
Q

D
REG BX

Q
D

REG CX
Q

D
REG DX

Q
D

……

Dec

Functional 
Block A

Functional 
Block B

Functional 
Block C

Functional 
Block D

Control Unit 
(CU)

P1 
Review



Example Datapath Architecture

Rev
iew

Register Array (Reg)

REG AX
Q

D
REG BX

Q
D

REG CX
Q

D
REG DX

Q
D

……

Dec

Functional 
Block A

Functional 
Block B

Functional 
Block C

Functional 
Block D

Control Unit 
(CU)

P1 
Review

• Register Array, MUX, DEC, etc.


• Functional Blocks: Arithmetic and Logical Unit (ALU), adder, subtractor, etc.



Register Transfer Operations

Rev
iew

Operator Example

Assignment <= ax <= 12h

Reg. Transfer <= ax <= bx

Addition + ax + bx

Subtraction - ax - bx

Shift Left sll ax sll 2

Shift Right srl ax srl 2

Operator Example

Bitwise AND and ax and bx

Bitwise OR or ax or bx

Bitwise NOT not not ax

Bitwise XOR xor ax xor bx

Vectors ax(3 down to 0) ax(3 down to 0)

Concatenate & ax(7 down to 4) 
&ax(3 down to 0)

P1 
Review



CPU Instructions

P2 
Instructions



Words of a Computer
• A computer’s language: instructions


• A computer’s vocabulary: instruction set


• Instructions are pure binary code


• Instructions are CPU specific


• CISC: 6502, M68k, x86, x86-64, etc.


• RISC: PowerPC, ARM, etc.

Conc
ep

t

P2 
Instructions



Instructions of a Computer
• Basic Register Micro-operations: CSCI150


• Data Transferring: main memory


• Jump operations: go to specific instruction


• Subroutine, goto expression, etc.


• Conditional branch: compare, if condition met go to specific instruction


• if-triggered subroutine or goto expressions

Conc
ep

t

P2 
Instructions



Programming Languages

• C/C++: Compiled languages, requires a compiler


• C programmes are the lowest level higher-level languages


• The language of embedded systems, and OS kernel


• Compiler "translates" C programmes to machine language in binary


• Binary is not readable by human, so we use assembly as substitution

Te
ch

nic
al

P0 
XXXXXXX

P2 
Instructions



ARM 16bit Thumb Instructions

Te
ch

nic
al

P2 
Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE Other operands

• ARM: a family of RISC instruction set architectures (ISA)


• Advanced RISC Machines


• 32bit, 64bit


• 16bit Thumb instruction set


• A subset of instructions that might have restrictions, but for us it’s good enough



ARM 16bit Thumb Instructions

Te
ch

nic
al

P2 
Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE Other operands

• OPCODE: operation code


• Instruction machine code/ instruction code  
Portion of a machine language instruction that specifies the operation to be 
performed by the CPU



ARM 16bit Thumb Instructions

Te
ch

nic
al

P2 
Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE Other operands

Opcode Instruction Encoding

00xxxx Register/Immediate: Arithmetic Operations

010000 Register: Logical Operations

010001 Special Register data instructions*

01001x Memory Load: from Literal Pool (PC with Offset)

0101xx 
011xxx 
100xxx

Memory Load/Store (Single address)

1010XX Relative Address calculation*
1011xx Misc*
1100xx Memory Load/Store (Blocks)*
1101xx Conditional branch: if-triggered subroutine/goto
11100x Unconditional branch: jump



• ARM Thumb instructions have access to 8 general purpose registers, although 
ARM-32 actually has 16 such registers


• Instructions are first stored in the main memory, then transferred to the CPU 
before it can be executed


• Traditionally, an instruction register (not GPR) is used to store this


• Modern CPUs for efficiency uses a special instruction queue 

• A GPR keeps track of the address of the current instruction being executed


• This is called the Programme Counter (PC), or R15 in ARM

Te
ch

nic
al

P2 
Instructions ARM 16bit Thumb Instructions



Address Memory Content

0000FFF0h ADD…

0000FFF2h MOV…

0000FFF4h ADD…

0000FFF6h MOV…

Main Memory

ARM 16bit Thumb Instructions

Te
ch

nic
al

1. Actual content may vary according to ARM specifications, this is just a simplified example

P2 
Instructions

CPU

IR

ADD…

PC 0000FFF0h0000FFF0h



ARM 16bit Thumb Instructions

Te
ch

nic
al

1. Actual content may vary according to ARM specifications, this is just a simplified example

P2 
Instructions

CPU

IR ADD…

PC 0000FFF0h0000FFF0h

ALU GPRs

Address Memory Content

0000FFF0h ADD…

0000FFF2h MOV…

0000FFF4h ADD…

0000FFF6h MOV…

Main Memory



Address Memory Content

0000FFF0h ADD…

0000FFF2h MOV…

0000FFF4h ADD…

0000FFF6h MOV…

Main Memory

ARM 16bit Thumb Instructions

Te
ch

nic
al

1. At the next CLK tick, PC = PC + 1

P2 
Instructions

CPU

IR ADD…

PC 0000FFF2h

ALU GPRs

+1
0000FFF2h

MOV…



Address Memory Content

0000FFF0h ADD…

0000FFF2h MOV…

0000FFF4h ADD…

0000FFF6h MOV…

Main Memory

ARM 16bit Thumb Instructions

Te
ch

nic
al

1. At the next CLK tick, PC = PC + 1

P2 
Instructions

CPU

IR MOV…

PC 0000FFF2h

ALU GPRs

+1



Instruction Register vs Queue
• Instruction Register


• One instruction can be moved to the CPU at any time


• After every instruction is executed, PC += 1, memory needs to be accessed so the next instruction could be 
brought in. This is very very slow, even with Cache


• Speed things up: some CPUs can bring in new instructionss from memory when the current instruction is not 
performing memory access, so as to speed things up


• Instruction specific cache: CPUs can have L1/L2 cache dedicated to instructions


• Instruction Queue


• Intel Sandy Bridge (2009/2011): maintain a queue of instructions to be executed within the CPU, so no need 
to wait for memory access at the end of every instruction


• Much much much faster

Conc
ep

t

P2 
Instructions


