52

15.10.24 15:22

CSCI 250
Introduction to Computer Organisation

Lecture 3: CPU Architecture |

Jetic Gu
2024 Fall Semester (S3)

Overview

e Architecture: von Neumann
e Textbook: LCD: 9.7; CO: 2.1
e Core ldeas:

1. Review

2. Instructions

Datapath Review

I Example Datapath Architecture

Control Unit
(CU)

Functional

Register Array (Reg)

Block A
l ' Functional
: Block B
| g!pm -
[REG X | _
-Im } mmmm Functional
. | Block C
T ‘
1 L
Functional
Block D

I Example Datapath Architecture

Control Unit
(CU)

Register Array (Reg)

s

Functional

Block A

|

S

Functional

Block B

e Register Array, MUX, DEC, etc.

Block C

' I_ Functional
L

Functional
Block D

e Functional Blocks: Arithmetic and Logical Unit (ALU), adder, subtractor, etc.

)

Register Transfer Operations

Operator Operator

ax and bx

Assignment ax <= 12h Bitwise AND

Reg. Transfer <= ax <= bx Bitwise OR or ax or bx
Addition t+ ax + bx Bitwise NOT not not ax
Subtraction — ax = bx Bitwise XOR XOr ax Xor bx
Shift Left sll ax sll 2 Vectors ax (3 down to 0) ax(3 down to 0)

Shift Right srl TNt BB Concatenate & ot S o 8

CPU Instructions

Words of a Computer

e A computer’s language: instructions
e A computer’s vocabulary: instruction set
e |nstructions are pure binary code
e |nstructions are CPU specific
e CISC: 6502, M68k, x86, x86-64, etc.

e RISC: PowerPC, ARM, etc.

™ Instructions of a Computer

e Basic Register Micro-operations: CSC|150
 Data Transferring: main memory
e Jump operations: go to specific instruction

e Subroutine, goto expression, etc.

 Conditional branch: compare, if condition met go to specific instruction

e if-triggered subroutine or goto expressions

Programming Languages

e C/C++: Compiled languages, requires a compiler
e C programmes are the lowest level higher-level languages
e The language of embedded systems, and OS kernel
e Compiler "translates” C programmes to machine language in binary

e Binary is not readable by human, so we use assembly as substitution

= ARM 16bit Thumb Instructions

OPCODE Other operands

e ARM: a family of RISC instruction set architectures (ISA)
e Advanced RISC Machines
e 32bit, 64bit

e 16bit Thumb Instruction set

e A subset of instructions that might have restrictions, but for us it’'s good enough

= ARM 16bit Thumb Instructions

OPCODE Other operands

e OPCODE: operation code

* Instruction machine code/ instruction code
Portion of a machine language instruction that specifies the operation to be
performed by the CPU

e ARM 16bit Thumb Instructions

8 3 1
OPCODE Other operands

Opcode Instruction Encoding

00xxxx Register/Immediate: Arithmetic Operations

010000 Register: Logical Operations

010001 Special Register data instructions®

01001x Memory Load: from Literal Pool (PC with Offset)

0101xx

011lxxx Memory Load/Store (Single address)
100xxx

1010XX Relative Address calculation®
1011xx Misc*

1100xx Memory Load/Store (Blocks)*

1101xx Conditional branch: i f-triggered subroutine/goto

11100x Unconditional branch: jump

= ARM 16bit Thumb Instructions

e ARM Thumb instructions have access to 8 general purpose registers, although
ARM-32 actually has 16 such registers

e |nstructions are first stored in the main memory, then transferred to the CPU
before it can be executed

e Traditionally, an instruction register (not GPR) is used to store this

e Modern CPUs for efficiency uses a special instruction queue

e A GPR keeps track of the address of the current instruction being executed

 This is called the Programme Counter (PC), or R15 in ARM

= ARM 16bit Thumb Instructions

Address Memory Content

OOOOFFFOh

O000FFF2h MOV.
O000FFF4h ADD...
OO0OOFFF6h MOV...

1. Actual content may vary according to ARM specifications, this is just a simplified example

= ARM 16bit Thumb Instructions

CPU
0000FFFOh Main Memory
Address Memory Content

/ \ OO0O0OOFFFOh
—_—
4—

1. Actual content may vary according to ARM specifications, this is just a simplified example

O000FFF2h MOV...
O000FFF4h ADD...
OO0OOFFF6h MOV...

= ARM 16bit Thumb Instructions

CPU
+1
0000FFF2h > Main Memory
Address Memory Content

/ \ OO0O0OOFFFOh
—_—
4—

1. At the next CLK tick, PC = PC + 1

O000FFF2h MOV...
O000FFF4h ADD...
OO0OOFFF6h MOV...

= ARM 16bit Thumb Instructions

CPU
+1
0000FFF2h > Main Memory
Address Memory Content

/ \ 0000FFFOh
—eep
4—

1. At the next CLK tick, PC = PC + 1

O000FFF2h MOV...
O000FFF4h ADD...
OO00OFFF6h MOV...

P2

Instructions

Instruction Register vs Queue

* |nstruction Register
* One instruction can be moved to the CPU at any time

* After every instruction is executed, PC += 1, memory needs to be accessed so the next instruction could be
brought in. This is very very slow, even with Cache

e Speed things up: some CPUs can bring in new instructionss from memory when the current instruction is not
performing memory access, so as to speed things up

* Instruction specific cache: CPUs can have L1/L.2 cache dedicated to instructions

e |nstruction Queue

* Intel Sandy Bridge (2009/2011): maintain a queue of instructions to be executed within the CPU, so no need
to wait for memory access at the end of every instruction

e Much much much faster

