
#04-2025-1003-201 CSCI 150

Jetic Gū
Columbia College
1. Handwritten submissions and proprietary formats (e.g. Pages or MS Word) will not be graded.
2. Late submission and resubmission policies are stated on the course webpage.
3. Mathematical expressions must be written entirely using LaTeX, otherwise 50%-100% of marks will be

deducted.
4. Circuits must be tested using appropriate IO against a truth table/specification. Untested circuits will re-

ceive 0.
Submission File structure:

submission.zip
 — c1-1.cct
 — c1-2.cct
 — c1-3.cct
 — c2.cct
 — c3.cct
 — c4.cct
 — c5-1.cct
 — c5-2.cct
 — c6.cct
 — c7.cct
 — lib.clf

All circuit files are 1pt each.

Lab 2

First Half

1. Create the following circuit components. Your CCT file must contain the following component being test-

ed using switches/probs/hex keyboard/hex display after being saved as a component in your library:

1. 4-to-16 Decoder implemented using a 3-to-8 decoder and 1-to-2 decoder (c1-1.cct); 

Requirement: you must implement the 3-to-8 decoder on your own

2. 8-to-3 priority encoder with validity bit (c1-2.cct); 

Requirement: your CCT file must show the component tested using a 3-to-8 decoder and HEX key-

board and HEX display

3. 4 channel 4bit Multiplexer implemented using the 4 channel 1bit Multiplexers (c1-3.cct); 

Requirement: your CCT file must show the component being tested using HEX keyboards and HEX

displays

Page of 1 2

#04-2025-1003-201 CSCI 150

2. Implement the following Boolean function with a 3-to-8 decoder: 

  
You must ONLY a the decoder and an additional OR gate. Save the circuit as c2.cct .

3. Implement a 4-bit binary plus 1 incrementer (c3.cct). Your CCT file must contain the following compo-

nent being tested using switches/probs/hex keyboard/hex display after being saved as a component in

your library. You should consider using the 5-step systematic design procedure. 

Requirement: your CCT file must show the component being tested using HEX keyboards and HEX dis-

plays. You must NOT use full adders to implement this.

4. A parity checker is a component that verifies the parity of the entire input. For example, an 8bit even parity

checker would be able to tell that 10010001 contains error, while 00011000 does not. Given 8bit input

, design an even parity checker that outputs 0 when no error is found, and 1 when there is. Save the

circuit as c4.cct . Your CCT file must show the component being tested using 2 hex keyboards and 1

binary prob.

Second Half

5. Create the following circuit components. Your CCT file must contain the following component being test-

ed using switches/probs/hex keyboard/hex display after being saved as a component in your library:

1. 4-bit binary adder with , , as input, and as output (c5-1.cct); 

Requirement: your CCT file must show the component being tested using HEX keyboards and HEX

displays

2. 4-bit binary adder-subtractor with XOR and a 4-bit Adder, the component should use , ,

as input, and as output (c5-2.cct); 

Requirement: your CCT file must show the component being tested using HEX keyboards and HEX

displays

6. Implement a 4-bit unsigned selective 2s complementer. It should take 4bits and as input,

 as output. It should output when , the unsigned 2s complement of when

. Save the circuit as c6.cct . (Hint: use your 4-bit binary plus 1 incrementer)

7. Use 5 step systematic design procedure to design a 2bit by 2bit multiplier. It should take , as in-

put, and as output where is an overflow bit. Save the circuit as c7.cct . Your CCT file must

show the component being tested using hex keyboards and displays as well as binary probs.

F(A, B, C) = Σm(1,2,3,6)

A7:0

X3:0 Y3:0 Z S3:0 C

X3:0 Y3:0 Sub
S3:0 C

A = A3 . . . A0 C
D = D3 . . . D0 A C = 0 A
C = 1

X1:0 Y1:0

P1:0 O O

Page of 2 2

