
#04-2024-1007-204 CSCI 250

Jetic Gū
1. Handwritten submissions and proprietary formats (e.g. Pages or MS Word) will not be graded.
2. Mathematical expressions must be written entirely using LaTeX, otherwise 50%-100% of marks will be

deducted.
3. Circuits must be tested. Untested circuits will receive 0.
Submission File structure:

submission.zip
 — circuit1.cct
 — circuit2-1.cct
 — circuit2-2.cct
 — circuit3.cct
 — csci250.clf

Circuit file 1 is 4pt; 2-1, 2-2, 3 are 2pt each.

Lab 4
1. CMP component. CMP is a special instruction that compares two numbers, and save the result in a spe-

cial flag register, so it can be used for conditional branching. In ARM, there are 4 flags, however in our

ARM16 implementation, we ask you to really only implement using 3 flip-flops for N, C, Z, while the V flag

can be ignored by value-fixing it with 0. You should implement this as a component, save in your library

and show it tested as circuit1.cct

1. IO specifications

1. Input: 16bit D16 Rn_data;

2. Input:16bit D16 Rn_data;

3. Input: 4bit condition code cond;

4. Input 1bit enable E;

5. Input 1bit CLK;

6. Output: F, dependent on cond and internal states N, C, Z, V.

2. Behaviour

1. When E == 0, Internal flip-flops’ values (N, C, Z) do not change.

2. When E <= 1, perform comparison, update N, C, Z at CLK.

3. Condition code and internal state / F relationship is as follows:

cond Label Condition for F to output 1

0000 EQ Z == 1 (Equal)

0001 NE Z == 0 (Not Equal)

cond Label

Page of 1 3

#04-2024-1007-204 CSCI 250

2. Memory to Data bus controller. This is a controller for your memory module, for when it is connected to the

main data bus.

1. Here are the IOs for this device:

• Bidirectional: 16bit D16, db

• Input: 16bit (optionally, you can use D16) DO, coming from the memory module.

• Output: WE, going into the memory module

• Output: 16bit DI, going into the memory module.

• Input: 1bit db_dir
2. Behaviour

• When db_dir == 0, DI <= db;

• When db_dir == 1, db <= DO;

• At any given time, WE <= db_dir.
3. Save this component as 16bit mem_ctrl, show it tested alongside your memory component as

circuit2-1.cct.

3. Data bus controller. This is a controller for your bidirectional data bus, using which you can control the di-

rection in which information traverses. More specifically, the following functionalities need to be supported:

1. The ability to direct ALU output to the register array;

0010 CS C == 1 (Unsigned greater or equal)

0011 CC C == 0 (Unsigned lesser)

0100 MI N == 1 (Negative)

0101 PL N == 0 (Non-negative)

0110 VS V == 1 (There was overflow)

0111 VC V == 0 (There wasn’t overflow)

1000 HI C and notZ (Unsigned greater than)

1001 LS notC or Z (Unsigned lessor or equal)

1010 GE (N and V) or (notN and notV) (greater or equal)

1011 LT N xor V (less than)

1100 GT notZ and GE (greater than)

1101 LE Z or LT (less than)

1110 AL Always (Condition is always met)

1111 NV Never (Condition is never met)

Condition for F to output 1cond Label

Page of 2 3

#04-2024-1007-204 CSCI 250

2. The ability to send a register value to the data bus;

3. The ability to send the value on the data bus to the register array.

1. Here are the IOs for this device:

• Bidirectional: 16bit D16, db

• Input: 16bit D16, ALU, computational result from ALU

• Input: 16bit D16, Rx_data, from Register array

• Input: 1bit db_dir

• Output: 16bit D16, Rd_data
2. Behaviour:

• When db_dir == 0, db <= Rx_data; Rd_data <= ALU

• When db_dir == 1, Rd_data <= db;
3. Requirement

• Save this component as 16bit db_ctrl in your library

• Show this component tested alongside your memory module and mem_ctrl, and in
circuit2-2.cct.

4. Register Array Modification

1. Add an additional input D3 bus Rx and output D16 bus Rx_data to your register array, such that

Rx_data receives value from register selected by Rx.

2. Add an additional output D16 named PC, that always outputs the value from Register number 7.

3. Modify your register array, such that register number 7 (PC) can:

1. When Rd == 7, receives new value from Rd_data;

2. When Rd != 7, instead of not receiving updates, has its value increased by 1.

3. The above should only occur at CLK when Rw == 1 and Reset != 1.

4. Add another D16 output PC, always showing the data stored in R7.

4. Save this component in your library, and show it tested in circuit3.cct.

Page of 3 3

