52

22.11.24 18:55

CSCI 250
Introduction to Computer Organisation
Lecture 5: Compiler Basics |l

Jetic Gu
2024 Fall Semester (S3)



Overview

o Architecture: von Neumann
e Textbook: CO: 4.5
e Core ldeas:

1. Intro to ARM Assembly



Introduction to
Assembly Language



=« What are the properties of
ASM?

e Assembly Languages are

e The fasted programming language out there, equivalent to machine code
(but readable)

e Processor / Platform specific

e Knowledge of basic assembly language (those included in Lab 5 only) will be
included in the final exam



Development Environment

e You need

e.g. vim

o A text editor

e An assembler

e.g. M-chip Macs (Unix)

e An appropriate computer




Caution!

e ARMOG4

e |s a little different from the ARM16 we are using, but mostly because it’s
64Dbit. The 16bit thumb instructions are mostly the same.

e Apple’s ARM64 assembly and Android’s ARM64 assembly differs a little, we
will point out all differences, but all demos will be performed on Apple’s

ARM®64 for now.

e Easy way to get into ARM assembly programming: Macs (Unix), or
Raspberry Pi (Linux)




System Calls

e What are system calls?

e System calls are Operating System provided functions, including the
manipulation of stdio etc.

e e.g.every function in cstdio (C++) and stdio.h (C) are system calls

e Android uses Linux, which has slightly different system calls than Unix




Hello World

.global main

.align Z
~mailn:
adr x0, msg
bl puts // syscall, write x0 to stdout
mov x0, #0
b exit // syscall, exit the programme
msg:

.ascll "Hello, World!"™




P1
Intro ASM

How to Compile?

vi helloword.s

gcc helloword.s -o helloword
./helloword

| $?
-bash: 0: command not found

IHe11o, world!

e | use vim to edit all my code, assembly code should have suffix . s

e gcc can be used as assembler, in this case it performs assembling and linking
together

e assembling: translate assembly code to binary

* |inking: system call codes are linked to the binary as well




Hello World

.global main

.align Z
~mailn:
adr x0, msg
bl puts // syscall, write x0 to stdout
mov x0, #0
b exit // syscall, exit the programme
msg:

.ascll "Hello, World!"™




Hello World

.global mailn assembler directive
.align

e If a line starts with a dot then followed by an identifier, this is called

Assembler Directive

e In this case, we are declaring a function main, which needs to be
ms« externally accessible symbol

e Just like in C/C++, the main function is the main function of the
programme




Hello World

.global main

assembler directive

IMc
e align is adirective that aligns the section programme counter
(SPC)
e align is a performance enhancer. It changes how much data is
MS¢

retrieved from the main memory

e We can leave it as 2 for now




balZ_main He||0 WOrId

gI

- main:
adr x0, msg

bl ~puts // syscall, write x0 to stdout main function
x0, #0
b exit // syscall, exit the programme
msc

e main: signals the starting of actual code for the symbol, in this case
a function

® adr Is kinda like the 1dr we’ve discussed In class, but in Unix you
need to use adr instead of 1dr to make things work

* I[n Linux, youuse start instead of main




balZ_main HeIIO WOrId

gn
maln:
adr X0, mso load address of string
bl ~puts // syscall, write x0 to stdout
mov x0, #0
b exit // syscall, exit the programme
msq: |
.ascll "Hello, World!"™ actual string

e |n this case, the address of variable msg Is loaded into register x0
e MacOS/iOS’s Unix assembly uses x0-x30 for GPRs

e |n Linux, they are r0-r30




balZ_main He||0 WOrId

gn
maln:
adr X0, mso load address of string
bl ~puts // syscall, write x0 to stdout
mov x0, #0
b exit // syscall, exit the programme
msq: |
.ascll "Hello, World!"™ actual string

e Special Registers

e LR (x30/ r30) thisis the link register, used to store the value of your
previous PC before a branch

e PC cannot be directly accessed as x31/r31, it requires B/BL instr.



balZ_main He||0 WOrId

gn
maln:
adr X0, mso load address of string
bl ~puts // syscall, write x0 to stdout
mov x0, #0
b exit // syscall, exit the programme
=g tual stri
.ascll "Hello, World!"™ AGHHEl SHng
® msg

e |s declared as a variable of .ascii type, with value
Hello, World!




balZ_main HeIIO WOrId

gn
- main:

adr x0, msg

b ~puts // syscall, write x0 to stdout system call

N — —

* b1l: Branch and Link
M S
e Branch: executes syscall puts, which is a function provided by the

operating system, that prints the characters starting at memory
address specified by x0, until it hits #0

e Link: stores the current PC value to LR (x30), so when the syscall
ends, LR’s value can be reloaded back to PC, and the programme

could continue running




balZ_main He||0 WOrId

gn
- main:
adr x0, msg
bl outs // syscall, write x0 to stdout
mowv x0, #0 change x0 value
b exit // syscall, exit the programme
msqg:

T™_T _ I R I B A |

* mov: move data
e (GGive x0 a new value of 0

e Constant number values in Linux has to begin with #, this is not
necessary in Unix, but using it is more universal




balZ_main He||0 WOrId

agn
- main:
adr x0, msg
bl outs // syscall, write x0 to stdout
mov x0, #0 change x0 value
b exit // syscall, exit the programme
msqg:

T™_T _ I R I B A |

e Literal Numbers

e #0x or #& means this Is a hexadecimal number
e.g. #0xAF, #&AF

e #2 means this is a binary number
e.g.#2 1101




balZ_main He||0 WOrId

gn
- main:

adr x0, msg

bl ~puts // syscall, write x0 to stdout

mov x0, #0

b ~exit // syscall, exit the programme  change x0 value

msqg :

T™_T _ I R I B A |

e b: branching (no linking)

e \We are telling the OS we’d like to terminate the programme

e OS performs garbage collection for your memory, and terminates the
programme properly



B4 | want to look at my programme

e We can do that using a disassembler, like otool
Note: otool doesn’t handle variable values that well

® 0otool -vt ./helloworld

» Jetie otool -vt ./helloword
./hel loword:

section

0000000100003f70 adr x0, #16
0000000100003f74 bl 0x100003f9c ; symbol stub for: _puts

0000000100003f78 mov x0, #0xO0
0000000100003f7c b 0x100003f90 ; symbol stub for: _exit

msg:
0000000100003f80 ldnp d8, d25, [x10, #-0x140]
0000000100003f84 . long 0x57202co6f
0000000100003f88 . long Ox646¢c726f
0000000100003f8c | long Ox6eb646c21

(end of section) .

;

Addresses/Lines ldnp here is a mistranslation




