
15.11.24 17:58

CSCI 250
Introduction to Computer Organisation
Lecture 4: Control Unit and Pipelines III

Jetic Gū

2024 Fall Semester (S3)

Overview
• Architecture: von Neumann

• Textbook: CO: 4.5

• Core Ideas:

1. Pipelined Computers II: Hazard Control

2. Pipelined Computers III: Simple Pipelined CPU

3. Lab 4 Part 2

Properties of CPU Pipeline
• Does pipelining reduce latency of a single stage/task?

• No, but it increases throughput of entire workload

• What could affect pipeline’s efficiency?

• The slowest stage

• Total number of stages

• Unbalanced lengths of stages: some stages significantly slower than others

• When to fill pipeline, and when to drain/flush it

Rev
iew

P0
XXXXXXX

P0
Review

P0
XXXXXXX

P1
Hazard

CPU Pipelines II
Hazard

Possible Issues in
Implementation

•  
 

• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a
previous branch instruction already in pipeline

• Data hazards 
an instruction in the pipeline requires data to be computed by a previous
instruction still in the pipeline

Conc
ep

t

P0
XXXXXXX

P1
Hazard

• Structural hazards 
Different instructions, at different stages, want to use the same hardware
resource

Possible Issues in
Implementation

Conc
ep

t

P0
XXXXXXX

P1
Hazard

• Structural hazards 
Different instructions, at different stages, want to use the same hardware
resource

• e.g. when multiple stages of execution wants to access the main
memory, it is served at a first-come-first-server principle

• the rest of the stages are "stalled", and have to wait for their turns

• Solution: stalling

Possible Issues in
Implementation

Exa
mple

P0
XXXXXXX

P1
Pipeline

• Structural hazards 
Different instructions, at different stages, want to use the same hardware
resource

Time
Task

order

Fetch Dec Exe
(Mem)

Fetch Dec Exe
(Mem)

Fetch Dec Exe
(Mem)

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

0. LDR

1. LDR

2. LDR

…

=

• Solution: stalling

This LDR is stalled

Possible Issues in
Implementation

Conc
ep

t

P0
XXXXXXX

P1
Hazard

• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a
previous branch instruction already in pipeline

• when a branching instruction is Fetched into the pipeline, subsequent
instructions’ fetch are stalled

• this prevents new instructions from being fetched into the pipeline,
effectively flushes the entire pipeline

• Solution #1: stalling

Possible Issues in
Implementation

Conc
ep

t

P0
XXXXXXX

P1
Hazard

• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a
previous branch instruction already in pipeline

• Proceed with pipeline, keep fetching. If outcome from a conditional
branch stands (actually goes into branch), then perform flush

• Think: how is this different from stalling? 
Is it better or worse?

• Solution #2: static branch prediction

Possible Issues in
Implementation

Conc
ep

t

P0
XXXXXXX

P1
Hazard

• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a
previous branch instruction already in pipeline

• Requires the compiler to find branching-independent instructions to
put right next to the branching statement, so the pipeline can keep
executing even when it encounters branching

• This relies heavily on compilers, doesn’t always work

• Solution #3: delayed branch

Possible Issues in
Implementation

Conc
ep

t

P0
XXXXXXX

P1
Hazard

• Data hazards  
An instruction in the pipeline, requires data to be computed by a previous
instruction still in the pipeline

• Create bridges between different stages’, so some data can be fast
forwarded to the next stage, parallel to e.g. register write operations

• In the event this isn’t enough, stall

• Solution: forwarding

Data Hazards
  Data hazard: instruction needs data from the result of a

previous instruction still executing in pipeline
 Solution Forward data if possible…

Tim e
2 4 6 8 10

add $s0, $t0 , $ t1

IF ID W BEX M EM

a d d $ s 0 , $ t 0 , $ t 1

s u b $ t 2 , $ s 0 , $ t 3

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

I F I D W B E X

I F I D M E M E X

T i m e
2 4 6 8 1 0

M E M

W B M E M

Instruction pipeline diagram:
shade indicates use –
left=write, right=read

Without forwarding – blue line –
data has to go back in time;
with forwarding – red line –
data is available in time

Possible Issues in
Implementation

• sub here depends on add, so we create a bridge between the Execution
stage and Decoding stage

Te
ch

nic
al

P0
XXXXXXX

P1
Hazard

• Data hazards  
An instruction in the pipeline, requires data to be computed by a previous
instruction still in the pipeline
• Solution: forwarding

Software Solution
• Is there anything you could do on the software side?

• Compilers (e.g. gcc, clang, etc.)

• Code comes in, compiler depends on the CPU architecture, tries to reorder
instructions, simplify your code, etc. to prevent issues

• Compiler flags

• gcc options: -O1, -O2, -O3  
speed things up for you by aggressively doing reordering among other things.
Using -O3 could cause issues especially if you are managing memory
manually, use with caution. -O2 and -O3 are also not gdb/lldb friendly.

Te
ch

nic
al

P0
XXXXXXX

P1
Hazard

Summary

• Hazards

• Structural Hazard: Stall

• Control Hazard: Stall / Branch prediction / Delayed branch

• Data Hazard: Forwarding / Stall

• Software: Compiler optimisation, reordering

Rev
iew

P0
XXXXXXX

P1
Hazard

P0
XXXXXXX

P2
Implementation

CPU Pipelines III
Simple Pipeline Implementation

Our MIPS Example Before

Rev
iew

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

P2
Implementation

Our MIPS Example Before

• MIPS CPUs commonly uses a 5 stage design

• Fetch, Decode, Execute

• Additional stages after Execution: Memory, Write Back

Conc
ep

t

P0
XXXXXXX

P2
Implementation

MIPS Stages

Te
ch

nic
al

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

P2
Implementation

1. Fetch 2. Decode 3. Execute 4. Memory

5. Write Back

MIPS Fetch

• In the Fetch stage, the new instruction is retrieved from the instruction memory, stored
in Stage 1 register (S1, or Instruction Register). Meanwhile, PC’s value increases by 1.

Te
ch

nic
al

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

P2
Implementation

2. Decode 3. Execute 4. Memory1. Fetch

5. Write Back

MIPS Fetch

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 3. Execute 4. Memory

P2
Implementation

• In the Fetch stage, the new instruction is retrieved from the instruction memory, stored
in Stage 1 register (S1, or Instruction Register). Meanwhile, PC’s value increases by 1.

1. Fetch

5. Write Back

1. Instruction Register

MIPS Decode

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

3. Execute 4. Memory

P2
Implementation

• In the Decode stage, information from the Register Array is retrieved, and
saved in S2 registers (stage 2 registers) for the ALU to access

1. Fetch

5. Write Back

1. Instruction Register

2. Decode

MIPS Decode

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 3. Execute 4. Memory

1. Instruction Register

P2
Implementation

• In the Decode stage, information from the Register Array is retrieved, and
saved in S2 registers (stage 2 registers) for the ALU to access

1. Fetch

5. Write Back
2. Tm

p x 2 + ALU
/M

em
/D

B C
trl.

MIPS Execute

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 4. Memory

1. Instruction Register

P2
Implementation

• In the Execute stage, ALU performs calculation, and the results are temporarily
stored within S3 Registers

1. Fetch

5. Write Back

3. Execute
2. Tm

p x 2 + ALU
/M

em
/D

B C
trl.

MIPS Execute

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 3. Execute 4. Memory

1. Instruction Register

P2
Implementation

• In the Execute stage, ALU performs calculation, and the results are temporarily
stored within S3 Registers

1. Fetch

5. Write Back

3. Tm
p x 2 + M

em
/D

B C
trl.

2. Tm
p x 2 + ALU

/M
em

/D
B C

trl.

MIPS Mem

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 3. Execute 4. Memory

1. Instruction Register

P2
Implementation

• In the Mem stage, data is retrieved to S4 register (from memory (if mem_load)
or S3 register), or data is written into memory from S3 register

1. Fetch

5. Write Back

3. Tm
p x 2 + M

em
/D

B C
trl.

2. Tm
p x 2 + ALU

/M
em

/D
B C

trl.

MIPS Mem

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 3. Execute 4. Memory

1. Instruction Register

P2
Implementation

• In the Mem stage, data is retrieved to S4 register (from memory (if mem_load)
or S3 register), or data is written into memory from S3 register

1. Fetch

5. Write Back4. Tmp

3. Tm
p x 2 + M

em
/D

B C
trl.

2. Tm
p x 2 + ALU

/M
em

/D
B C

trl.

4. RB C
trl.

MIPS Writeback

Te
ch

nic
al

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 3. Execute 4. Memory

1. Instruction Register

P2
Implementation

• In the Writeback stage, data from S4 register (if necessary), is saved in the
register array (Rd). PC’s value also receives update if needed.

1. Fetch
5. Write Back4. Tmp

3. Tm
p x 2 + M

em
/D

B C
trl.

2. Tm
p x 2 + ALU

/M
em

/D
B C

trl.

4. RB C
trl.

Stall

• How can we implement stalling/flushing?

• When do we need to stall/flush?
Thin

k

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

2. Decode 3. Execute 4. Memory

1. Instruction Register

P2
Implementation

1. Fetch
5. Write Back4. Tmp

4. RB C
trl.

3. Tm
p x 2 + M

em
/D

B C
trl.

2. Tm
p x 2 + ALU

/M
em

/D
B C

trl.

How is ARMv7 different?
• Our ARM16 CPU is based on the specification for ARMv7 thumb instruction set

• In ARMv7, PC is part of the register array

• We can accomplish that by: 
1. have R7 values (PC) outputted directly from the register array, separate from
the Rm_data, Rn_data  
2. implement the increment mechanism directly into R7 
(why can’t we implement it in the ALU?)

• In ARMv7, there’s only the main memory. However, since instructions are
commonly cached in the instruction cache, we can still preserve the instruction
memory module, as if it’s actually the Instruction Cache.

Conc
ep

t

P2
Implementation

P0
XXXXXXX

P3
Lab

Lab 4 Part 2
Data Bus controller,

Memory Array Modification

16bit Memory Controller
• We need a memory controller that is connected to the data bus, depending on direction react accordingly

• Bidirectional: 16bit D16, db

• Input: 1bit, db_dir; when db_dir is 0, data flows into memory, triggering store/mem_write

• Input: 16bit, DO from memory module;

• Output: 16bit, DI to the memory module;

• Output: 1bit WE;

• Always, WE <= db_dir;  
When db_dir == 0, DI <= db; 
When db_dir == 1, db <= DO;

La
b

P0
XXXXXXX

P3
Lab

3 State Buffers

• Component name: Buffer-4 T.S.

• This is a 4bit 3 state buffer

• You can use this to control whether a line is
connected or not

• Remember, Z here means Hi-Z (no connection, open
circuit)

Te
ch

nic
al

P3
Lab

4bit Memory Controller

Exa
mple

P3
Lab

• db_dir == 0

• Memory is in write/store mode 
WE <= 0

• Store value: DI <= db

• DO receives Z

• db_dir == 1

• Memory is in read/load mode 
WE <= 1

• DI receives db or Z

• db <= DO

Data Bus Controller
• We need a data bus controller just like the one in our MIPS example

• Bidirectional: 16bit D16, db

• Input: 16bit D16, ALU from ALU; 16bit D16, Rx_data, from Register array

• Input: 1bit db_dir

• Output: 16bit D16 Rd_data

• When db_dir == 0, db <= Rx_data; Rd_data <= ALU;  
When db_dir == 1, Rd_data <= db;

La
b

P0
XXXXXXX

P3
Lab

db_ctrl and mem_ctrl tested
together

La
b

P0
XXXXXXX

P3
Lab

Register Array Modification

• You need to modify your register array, such that

• R7’s value is updated every CLK, either from Rt_data, or to R7 + 1

• Add an Rx_data output bus, selected by Rx

• Add a 16bit PC output bus, always showing the value of R7

La
b

P0
XXXXXXX

P3
Lab

