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Overview
• Architecture: von Neumann


• Textbook: CO: 4.5


• Core Ideas:


1. Pipelined Computers II: Hazard Control


2. Pipelined Computers III: Simple Pipelined CPU


3. Lab 4 Part 2



Properties of CPU Pipeline
• Does pipelining reduce latency of a single stage/task?


• No, but it increases throughput of entire workload


• What could affect pipeline’s efficiency?


• The slowest stage


• Total number of stages


• Unbalanced lengths of stages: some stages significantly slower than others


• When to fill pipeline, and when to drain/flush it
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Possible Issues in 
Implementation

•  
 

• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a 
previous branch instruction already in pipeline


• Data hazards 
an instruction in the pipeline requires data to be computed by a previous 
instruction still in the pipeline

Conc
ep

t

P0 
XXXXXXX

P1 
Hazard

• Structural hazards 
Different instructions, at different stages, want to use the same hardware 
resource
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• Structural hazards 
Different instructions, at different stages, want to use the same hardware 
resource

• e.g. when multiple stages of execution wants to access the main 
memory, it is served at a first-come-first-server principle


• the rest of the stages are "stalled", and have to wait for their turns

• Solution: stalling
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• Structural hazards 
Different instructions, at different stages, want to use the same hardware 
resource
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• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a 
previous branch instruction already in pipeline

• when a branching instruction is Fetched into the pipeline, subsequent 
instructions’ fetch are stalled


• this prevents new instructions from being fetched into the pipeline, 
effectively flushes the entire pipeline

• Solution #1: stalling
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• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a 
previous branch instruction already in pipeline

• Proceed with pipeline, keep fetching. If outcome from a conditional 
branch stands (actually goes into branch), then perform flush


• Think: how is this different from stalling? 
Is it better or worse?

• Solution #2: static branch prediction
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• Control hazards 
Succeeding instruction, to put into pipeline, depends on the outcome of a 
previous branch instruction already in pipeline

• Requires the compiler to find branching-independent instructions to 
put right next to the branching statement, so the pipeline can keep 
executing even when it encounters branching


• This relies heavily on compilers, doesn’t always work

• Solution #3: delayed branch
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• Data hazards  
An instruction in the pipeline, requires data to be computed by a previous 
instruction still in the pipeline

• Create bridges between different stages’, so some data can be fast 
forwarded to the next stage, parallel to e.g. register write operations


• In the event this isn’t enough, stall 

• Solution: forwarding



Data Hazards 
  Data hazard: instruction needs data from the result of a 

previous instruction still executing in pipeline 
 Solution Forward data if possible… 
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Instruction pipeline diagram: 
shade indicates use –  
left=write, right=read 

Without forwarding – blue line – 
data has to go back in time; 
with forwarding – red line –   
data is available in time  

Possible Issues in 
Implementation

• sub here depends on add, so we create a bridge between the Execution 
stage and Decoding stage
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• Data hazards  
An instruction in the pipeline, requires data to be computed by a previous 
instruction still in the pipeline
• Solution: forwarding



Software Solution
• Is there anything you could do on the software side?


• Compilers (e.g. gcc, clang, etc.)


• Code comes in, compiler depends on the CPU architecture, tries to reorder 
instructions, simplify your code, etc. to prevent issues


• Compiler flags


• gcc options: -O1, -O2, -O3  
speed things up for you by aggressively doing reordering among other things. 
Using -O3 could cause issues especially if you are managing memory 
manually, use with caution. -O2 and -O3 are also not gdb/lldb friendly.
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Summary

• Hazards


• Structural Hazard: Stall


• Control Hazard: Stall / Branch prediction / Delayed branch


• Data Hazard: Forwarding / Stall


• Software: Compiler optimisation, reordering
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Our MIPS Example Before
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Our MIPS Example Before

• MIPS CPUs commonly uses a 5 stage design


• Fetch, Decode, Execute


• Additional stages after Execution: Memory, Write Back
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MIPS Stages
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MIPS Fetch

• In the Fetch stage, the new instruction is retrieved from the instruction memory, stored 
in Stage 1 register (S1, or Instruction Register). Meanwhile, PC’s value increases by 1.
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• In the Fetch stage, the new instruction is retrieved from the instruction memory, stored 
in Stage 1 register (S1, or Instruction Register). Meanwhile, PC’s value increases by 1.
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5. Write Back
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MIPS Decode
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• In the Decode stage, information from the Register Array is retrieved, and 
saved in S2 registers (stage 2 registers) for the ALU to access
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MIPS Decode
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• In the Decode stage, information from the Register Array is retrieved, and 
saved in S2 registers (stage 2 registers) for the ALU to access
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MIPS Execute
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• In the Execute stage, ALU performs calculation, and the results are temporarily 
stored within S3 Registers
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MIPS Execute
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• In the Execute stage, ALU performs calculation, and the results are temporarily 
stored within S3 Registers
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MIPS Mem
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• In the Mem stage, data is retrieved to S4 register (from memory (if mem_load) 
or S3 register), or data is written into memory from S3 register
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MIPS Mem
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• In the Mem stage, data is retrieved to S4 register (from memory (if mem_load) 
or S3 register), or data is written into memory from S3 register
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MIPS Writeback
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• In the Writeback stage, data from S4 register (if necessary), is saved in the 
register array (Rd). PC’s value also receives update if needed.
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Stall

• How can we implement stalling/flushing?


• When do we need to stall/flush?
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How is ARMv7 different?
• Our ARM16 CPU is based on the specification for ARMv7 thumb instruction set


• In ARMv7, PC is part of the register array


• We can accomplish that by: 
1. have R7 values (PC) outputted directly from the register array, separate from 
the Rm_data, Rn_data  
2. implement the increment mechanism directly into R7 
(why can’t we implement it in the ALU?)


• In ARMv7, there’s only the main memory. However, since instructions are 
commonly cached in the instruction cache, we can still preserve the instruction 
memory module, as if it’s actually the Instruction Cache.
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Lab 4 Part 2
Data Bus controller,


Memory Array Modification



16bit Memory Controller
• We need a memory controller that is connected to the data bus, depending on direction react accordingly


• Bidirectional: 16bit D16, db


• Input: 1bit, db_dir; when db_dir is 0, data flows into memory, triggering store/mem_write


• Input: 16bit, DO from memory module;


• Output: 16bit, DI to the memory module;


• Output: 1bit WE;


• Always, WE <= db_dir;  
When db_dir == 0, DI <= db; 
When db_dir == 1, db <= DO;
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3 State Buffers

• Component name: Buffer-4 T.S.


• This is a 4bit 3 state buffer


• You can use this to control whether a line is 
connected or not


• Remember, Z here means Hi-Z (no connection, open 
circuit)
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4bit Memory Controller
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• db_dir == 0 

• Memory is in write/store mode 
WE <= 0


• Store value: DI <= db


• DO receives Z 

• db_dir == 1 

• Memory is in read/load mode 
WE <= 1 

• DI receives db or Z 

• db <= DO



Data Bus Controller
• We need a data bus controller just like the one in our MIPS example


• Bidirectional: 16bit D16, db


• Input: 16bit D16, ALU from ALU; 16bit D16, Rx_data, from Register array


• Input: 1bit db_dir


• Output: 16bit D16 Rd_data


• When db_dir == 0, db <= Rx_data; Rd_data <= ALU;  
When db_dir == 1, Rd_data <= db; 
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db_ctrl and mem_ctrl tested 
together
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Register Array Modification

• You need to modify your register array, such that


• R7’s value is updated every CLK, either from Rt_data, or to R7 + 1


• Add an Rx_data output bus, selected by Rx 

• Add a 16bit PC output bus, always showing the value of R7
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