
12.11.24 14:52

CSCI 250 
Introduction to Computer Organisation 
Lecture 4: Control Unit and Pipelines II

Jetic Gū

2024 Fall Semester (S3)



Overview
• Architecture: von Neumann


• Textbook: CO: 4.5


• Core Ideas:


1. Pipelined Computers I


2. ARM Thumb Instructions: Branch


3. Lab 4 Part 1



3 Primary Stages of CPU 
Execution1

• Fetch 

• The fetching of information from either the Main Memory or Register


• Decode 

• The interpretation of the instruction, generating the appropriate Datapath Control


• Execute 

• Actual execution of the instruction 
After which the NS counter in the previous example should reset, so do the other 
Sequence Control signals

Rev
iew

P0 
XXXXXXX

1. IBM Stretch Project, 1956-1961

P0 
Multiple-Cycle



P0 
XXXXXXX

P2 
Pipeline

CPU Pipelines
I don’t want to spend my whole life waiting



A Laundry Analogy

• 4 Steps of doing laundry


1. Use the washer


2. Use the dryer


3. Fold the dried clothes


4. Put the folded clothes away in the wardrobe

Exa
mple

P1 
Pipeline

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.

1 2 3 4



A Laundry Analogy

Exa
mple

P1 
Pipeline

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.

• Your name is A


• You do your laundry from 6pm


• It takes 2 hours for you to finish



• Your roommate B waits for you


• B starts doing laundry from 8pm


• B finishes at 10pm

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.

A Laundry Analogy

Exa
mple

P1 
Pipeline

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.



 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.

A Laundry Analogy

Exa
mple

P1 
Pipeline

• If B, C, D waits for the previous person to finish organising the wardrobe 
before starting to use the washer, it takes a long time for all 4 people to finish 
their laundries

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.



 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.

A Laundry Analogy

Exa
mple

P1 
Pipeline

• Total duration: 6pm - 2am; 16 hours


• During which: 4 hours of washer working, 4 hours of dryer working 
75% idle, 25% efficiency (bad)

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.



A Laundry Analogy

Exa
mple

P1 
Pipeline

• Solution: allow the next person to use the washer, immediately after the first person 
ends


• Total duration: 7 hours, washer/dryer each work for 4hr; 57% efficiency, much better

 4.5 An Overview of Pipelining 273

into the washer. Next you have your roommate put the ! rst load away, you start 
folding the second load, the dryer has the third load, and you put the fourth load 
into the washer. At this point all steps—called stages in pipelining—are operating 
concurrently. As long as we have separate resources for each stage, we can pipeline 
the tasks.

" e pipelining paradox is that the time from placing a single dirty sock in the 
washer until it is dried, folded, and put away is not shorter for pipelining; the reason 
pipelining is faster for many loads is that everything is working in parallel, so more 
loads are ! nished per hour. Pipelining improves throughput of our laundry system. 
Hence, pipelining would not decrease the time to complete one load of laundry, 
but when we have many loads of laundry to do, the improvement in throughput 
decreases the total time to complete the work.

If all the stages take about the same amount of time and there is enough work 
to do, then the speed-up due to pipelining is equal to the number of stages in the 

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task
order

A

B

C

D

6 PM 7 8 9 10 11 12 1 2 AM

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty 
clothes to be washed, dried, folded, and put away. " e washer, dryer, “folder,” and “storer” each take 30 
minutes for their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes 
just 3.5 hours. We show the pipeline stage of di# erent loads over time by showing copies of the four resources 
on this two-dimensional time line, but we really have just one of each resource.



Multiple-Cycle CPU

Exa
mple

P1 
Pipeline

• Say, 3 instructions needs to be executed, like we discussed last week


• Without pipeline, it’s taking quite a while

Time

Task

order

Fetch Dec Exe

Fetch Dec Exe

Fetch Dec Exe

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7 CLK8

Ins. 0

Ins. 1

Ins. 2

…



Multiple-Cycle CPU

Exa
mple

P1 
Pipeline

• Pipeline starts working on the next instruction as soon as the current one enters the 
next stage


• At peak efficiency, you can get infinitely close to 100% efficiency. 
(Think: what would be necessary?)

Time

Task

order

Fetch Dec Exe

Fetch Dec Exe

Fetch Dec Exe

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7 CLK8

Ins. 0

Ins. 1

Ins. 2

…



Possible Issues?
• Fetch is a memory operation, will involve memory


• In ARMv7, this involves Loading the instruction from main memory


• Decode doesn’t involve memory


• In ARMv7, this involves figuring out which registers are involved in the 
execution of the instruction, and make them ready for the ALU


• Execute could also involve memory access


• In ARMv7, ALU executes the arithmetic operation. Upon finishing, the results 
are written back to the register array, or Main Memory (store/load operation)

Conc
ep

t

P1 
Pipeline



Possible Issues?

Exa
mple

P1 
Pipeline

• Whenever memory operations are required in Execute, we cannot perform Fetch at the 
same time


• This is called structural hazard: hardware cannot support the combination of 
instructions we want to run in the same clock cycle

Time

Task

order

Fetch Dec Exe 
(mem)

Fetch Dec Exe

Fetch Dec Exe

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7 CLK8

Ins. 0

Ins. 1

Ins. 2

…



Instruction Fetch Decode Execute
Require 

Mem 
Access

STR 
Store register 4ns 0.2ps 4ns Yes

LDR 
Load register 4ns 0.2ps 3ns Yes

Add 4ns 0.2ps 0.6ps No

Sub 4ns 0.2ps 0.6ps No

Mov 4ns 0.2ps 0.6ps No

Example

• With the following instructions in this order, 
without pipelining, how much time is 
needed to execute the whole thing?


• LDR -> LDR -> LDR -> 
ADD -> MOV -> SUB -> 
STR -> STR

Exa
mple

P0 
XXXXXXX

P1 
Pipeline



Instruction Fetch Decode Execute
Require 

Mem 
Access

STR 
Store register 4ns 0.2ps 4ns Yes

LDR 
Load register 4ns 0.2ps 3ns Yes

Add 4ns 0.2ps 0.6ps No

Sub 4ns 0.2ps 0.6ps No

Mov 4ns 0.2ps 0.6ps No

Example

• With the following instructions in this order, 
with pipelining and no cache, how much 
time is needed to execute the whole thing?


• LDR -> LDR -> LDR -> 
ADD -> MOV -> SUB -> 
STR -> STR

Exa
mple

P0 
XXXXXXX

P1 
Pipeline



Example

• The maximum amount of time for any stage is: 4ns (memory read/write)


• So execution time is measured in increments of 4ns

Exa
mple

P0 
XXXXXXX

P1 
Pipeline

Time

Task

order

Fetch Dec Exe

Fetch Dec Exe

Fetch Dec Exe

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

0. LDR

1. LDR

2. LDR

…



Example

• Exe stages with memory operations cannot overlap with Fetch, decode 
however is fine

Exa
mple

P0 
XXXXXXX

P1 
Pipeline

Time

Task

order

Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

0. LDR

1. LDR

2. LDR

…



Example

• Exe stages with memory operations cannot overlap with Fetch, decode 
however is fine (time reduction: 1 x 4ns = 4 ns)

Exa
mple

P0 
XXXXXXX

P1 
Pipeline

Time

Task

order

Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

0. LDR

1. LDR

2. LDR

…



Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)

0. LDR

1. LDR

Example

• The next operations, without overlapping memory operations, can be 
organised as such

Exa
mple

P0 
XXXXXXX

P1 
Pipeline

Time

Task

order

Fetch Dec Exe 
(Mem)

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

2. LDR

…

3. ADD

4. MOV

5. SUB

Fetch Dec Exe

Fetch Dec Exe

Fetch Dec Exe



Example

• The next operations, without overlapping memory operations, can be 
organised as such (time reduction: 5 x 4ns = 20 ns, total: 24ns)

Exa
mple

P0 
XXXXXXX

P1 
Pipeline

Time

Task

order

Fetch Dec Exe 
(Mem)

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

2. LDR

…

3. ADD

4. MOV

5. SUB

Fetch Dec Exe

Fetch Dec Exe

Fetch Dec Exe



2. LDR

3. ADD

4. MOV

Fetch Dec Exe 
(Mem)

Fetch Dec Exe

Fetch Dec Exe

Example

• The next two STR operations needs MEM, so we have to adjust a bit

Exa
mple

P0 
XXXXXXX

P1 
Pipeline

Time

Task

order

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

…

5. SUB Fetch Dec Exe

6. STR

7. STR

Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)



2. LDR

3. ADD

4. MOV

Fetch Dec Exe 
(Mem)

Fetch Dec Exe

Fetch Dec Exe

Example

• The next two STR operations needs MEM, so we have to adjust a bit 
Final time reduction: 4 x 4ns = 16 ns, total savings: 40ns


• Without pipelining: 8 x 3 x 4ns = 96 ns; With pipelining: 56 ns;

Exa
mple

P0 
XXXXXXX

P1 
Pipeline

Time

Task

order

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

…

5. SUB Fetch Dec Exe

6. STR

7. STR

Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)



What is the most important 
aspect of pipelining?

• What is the slowest operation?


• How do we optimise our pipeline so it can run the fastest?


• How do we know our pipeline is good enough?


• What instructions could render pipelines ineffective?

Exa
mple

P1 
Pipeline



Cache
• What makes Cache vital


• Instructions are always Cached


• Instructions can be Cached separately from data cache


• Meaning: modern computers with separate instruction cache and data 
cache, can actually allow simultaneous Fetch and Execution regardless of 
whether you need memory access in Execution!


• Does it resolve the issue with Branching? Why?

Exa
mple

P0 
XXXXXXX

P1 
Pipeline



Separate Instruction/Data 
Cache

• Fetch will always go to the Instruction Cache, which can be done concurrently with Execution memory 
access with Data Cache


• Instructions are not supposed to change on-the-fly, and memory writes in Execution is only done to 
Data Cache, will not affect Instruction Cache. This simplifies our design and further increases efficiency

Exa
mple

P1 
Pipeline

Time

Task

order

4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns 4ns

Fetch Dec Exe

Fetch Dec Exe 
(Mem)

Fetch Dec Exe 
(Mem)

Fetch Dec Exe

Fetch Dec Exe 
(Mem)



Stages of ARM CPUs
• ARM largely follows the Fetch/Decode/Execution idea, with


• ARMv7: exactly these 3 stages


• ARMv9: 5 stages, but each stage is much more efficient than ARMv7, so the overall 
efficiency is actually higher


• ARMv10: 6 stage, but each stage is much more efficient than ARMv7/v9, so the 
overall efficiency is almost double that of ARMv7


• ARMv11: 8 stages, fetch for example is divided into two; even faster than v10


• Why does having more stages give faster execution? 
Because of Pipelining.

Rev
iew

P0 
XXXXXXX

1. https://developer.arm.com/documentation/ddi0333/h/introduction/pipeline-stages

P1 
Pipeline

https://developer.arm.com/documentation/ddi0333/h/introduction/pipeline-stages


P0 
XXXXXXX

P2 
ARM B(X)

ARM Branching



ARM 16bit Thumb Instructions

Te
ch

nic
al

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE Other operands

Opcode Instruction Encoding

00xxxx Register/Immediate: Arithmetic Operations AU

010000 Register: Logical Operations LU

010001 Special Register data instructions* BX

01001x Memory Load: from Literal Pool (PC with Offset) MEM

0101xx 
011xxx 
100xxx

Memory Load/Store (Single address) MEM

1010XX Relative Address calculation*
1011xx Misc*
1100xx Memory Load/Store (Blocks)*
1101xx Conditional branch: if-triggered subroutine/goto B
11100x Unconditional branch: jump B

P2 
ARM B(X)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding


Branching / Jump is a simple 
idea

• Jump / Unconditional Branching


• We are changing the value of PC


• Conditional Branching 

• We are changing the value of PC, when certain condition is met

Rev
iew

P2 
ARM B(X)



Branch and Exchange (BX1)

• Special data instructions and branch and exchange 

• This is the only instruction in this category that we care about


• BX


• Take the value from Register Rm, give it to PC (R7)


• Why you should use BX instead of MOV when assigning new value to PC?

Te
ch

nic
al

1. I changed the spec here to reflect our lower number of registers than ARM32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 1 1 0 Rm 0 0 0 0

P2 
ARM B(X)



ARM 16bit Thumb Instructions

Te
ch

nic
al

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE Other operands

Opcode Instruction Encoding

00xxxx Register/Immediate: Arithmetic Operations AU

010000 Register: Logical Operations LU

010001 Special Register data instructions* BX √

01001x Memory Load: from Literal Pool (PC with Offset) MEM

0101xx 
011xxx 
100xxx

Memory Load/Store (Single address) MEM

1010XX Relative Address calculation*
1011xx Misc*
1100xx Memory Load/Store (Blocks)*
1101xx Conditional branch: if-triggered subroutine/goto B
11100x Unconditional branch: jump B

P2 
ARM B(X)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding


Unconditional branch: jump

• Unconditional Jump 

• Format: B Imm11


• PC receives value from Imm11

Te
ch

nic
al

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 Imm11

P2 
ARM B(X)



ARM 16bit Thumb Instructions

Te
ch

nic
al

1. https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPCODE Other operands

Opcode Instruction Encoding

00xxxx Register/Immediate: Arithmetic Operations AU

010000 Register: Logical Operations LU

010001 Special Register data instructions* BX √

01001x Memory Load: from Literal Pool (PC with Offset) MEM

0101xx 
011xxx 
100xxx

Memory Load/Store (Single address) MEM

1010XX Relative Address calculation*
1011xx Misc*
1100xx Memory Load/Store (Blocks)*
1101xx Conditional branch: if-triggered subroutine/goto B
11100x Unconditional branch: jump B√

P2 
ARM B(X)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Thumb-Instruction-Set-Encoding/16-bit-Thumb-instruction-encoding


Conditional Branch: B

• Conditional branch, and Supervisor Call 

• We won’t discuss supervisor call here, this is like a System Call to the OS


• Format: B.cond Imm8


• Condition: cond 


• The condition here is a 4 digit code cond that takes a look at the result of a 
preceding CMP (compare) operation or arithmetic operation

Te
ch

nic
al

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 Condition Imm8

P2 
ARM B(X)



CMP
• CMP 

• Format: CMP Rn Rm


• Compares the values in register Rm and Rn 

• The results are stored in a special Flag Register, that is NOT a GPR


• Specification for the Flag Register:

Te
ch

nic
al

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 1 0 1 0 Rm Rn

Flag Z=1 Z=0 C=1 C=0 N=1 N=0 V

Operations CMP CMP CMP CMP CMP CMP ADD/SUB

Meaning Rn == Rm Rn != Rm Rn >= Rm Rn < Rm Rn < 0 Rn >= 0 Overflow

P2 
ARM B(X)



Conditional Branch: B

Te
ch

nic
al

1. http://www.righto.com/2016/01/conditional-instructions-in-arm1.html

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 Condition Imm8

ConditionCode Label Flag Register content
0000 EQ Z == 1 (Equal)
0001 NE Z == 0 (Not Equal)
0010 CS C == 1 (Greater or equal)
0011 CC C == 0 (Lesser)
0100 MI N == 1 (Negative)
0101 PL N == 0 (Non-negative)
0110 VS V == 1 (There was overflow)
0111 VC V == 0 (There wasn’t overflow)
1000 HI C and notZ (Greater than)
1001 LS notC or Z (Lessor or equal)
1010 GE (N and V) or (notN and notV) (greater or equal)
1011 LT N xor V (less than)
1100 GT notZ and GE (greater than)
1101 LE Z or LT (less than)
1110 AL Always (Condition is always met)
1111 NV Always (Condition is never met)

P2 
ARM B(X)

http://www.righto.com/2016/01/conditional-instructions-in-arm1.html


Conditional Branch: B

• Format: B.cond Imm8


• Condition: cond 


• With the condition code, check the flag register to see if the condition is met


• If met, PC receives new value from Imm8

Te
ch

nic
al

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 Condition Imm8

P2 
ARM B(X)



Think

• How does Memory operations affect the pipeline?


• How does branching affect the pipeline?

Futu
re

P0 
XXXXXXX

P2 
ARM B(X)



P0 
XXXXXXX

P3 
Lab

Lab 4 part 1
Building CMP and Condition Code checker



Building a CMP component

• Build a CMP component, with 3 internal flip-flops. The component must be done using circuit diagrams


• Input: 16bit Rn, 16bit Rm, 4bit condition code cond, 1bit enable E, 1bit CLK. Let’s assume V is always 
0, so no need to worry about carry.


• Output: F, dependent on cond and internal states N, C, Z, V.


• When E <= 0


• Internal flip-flops’ values do not change. 


• When E <= 1


• Perform comparison, update N, C, Z at CLK

Te
ch

nic
al

P3 
Lab



Think

• Is there an elegant way to include the CMP in your AL?

Te
ch

nic
al

P3 
Lab


