
12.11.24 14:52

CSCI 250
Introduction to Computer Organisation
Lecture 4: Control Unit and Pipelines I

Jetic Gū

2024 Fall Semester (S3)

Overview

• Architecture: von Neumann

• Textbook: LCD: v4 9.8, 9.9; v5 8.8, 8.9; CO: 4.4

• Core Ideas:

1. Single-Cycle Computers

2. Multiple-Cycle Computers

P0
XXXXXXX

P1
Single-Cycle

Single-Cycle
Computers

MIPS Example CPU

• Programme Counter increases its value for every CLK, moving to the next instruction to execute

Rev
iew

P0
XXXXXXX

ALU

Data bus

Mem Add

Mem R/W

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

P1
Single-Cycle

MIPS Example CPU
• This particular MIPS implementation:

• assumes that memory operations can be completed within 1 CLK cycle
(e.g. 1 positive pulse);

• assumes every arithmetic operations can be completed within 1 CLK cycle
(e.g. 1 positive pulse);

• assumes all Main databus operations (w/r) can be completed within 1 CLK
cycle.

• This is called a Single-Cycle Computer

Conc
ep

t

P1
Single-Cycle

Single Cycle Computer Issues

• Some Instructions will require more time

• Can you think of examples?

• Some devices on the main data bus will need more time

• Can you think of examples?

• How do we determine how fast this CPU can run?

• Depends on the worse-case delay path

Te
ch

nic
al

P1
Single-Cycle

Worse-Case Delay Path
• Some Instructions will require more time

• Can you think of examples?

• Some devices on the main data bus will need more time

• Can you think of examples?

• How do we determine how fast this CPU can run?

• Depends on the worse-case delay path

Te
ch

nic
al

P1
Single-Cycle

Worst Case Delay Path

• The delay path starts, where the PC gets a new address through

Te
ch

nic
al

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

0.2ns

P1
Single-Cycle

Worst Case Delay Path

• Then, an instruction is retrieved from the Instruction Memory, and that gets
decoded through the Instruction Interpreter (a.k.a. Instruction Decoder) (4ns)

Te
ch

nic
al

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

0.2ns 4ns

P1
Single-Cycle

Worst Case Delay Path

• After interpretation, the registers are Read (0.8ns), and fed through a few
MUXs (0.2ns), that’s 0.2+0.8 = 1ns

Te
ch

nic
al

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

0.2ns 4ns 1ns

P1
Single-Cycle

Worst Case Delay Path

• The ALU performs the appropriate arithmetics, then uses another set of MUXs to select the output;
or, the data bus handles some memory read/write. Let’s be generous and say this costs 4.2ns

Te
ch

nic
al

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

0.2ns 4ns 1ns 4.2ns

P1
Single-Cycle

Worst Case Delay Path

• Finally, the results are written back into the register array. Let’s say this takes
0.6ns.

Te
ch

nic
al

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

0.2ns 4ns 1ns 4.2ns 0.6ns

P1
Single-Cycle

Worst Case Delay Path

• This is called the Worst-Case Delay Path

• For every step of the way, we calculate the Worse-Case
Delay for that step

• Add up all the delays across this entire path, we get the
final WCDP time: 9.8ns

• 9.8ns = 9.8 x 10-9 s; This limits the max CPU speed at
102MHz1 ÷ (9.8 × 10−9) ≈

Conc
ep

t

1. Figure 8.17

8-9 / Multiple-Cycle Hardwired Control 467

permits the clock frequency to be increased. A pipelined datapath and control given
in Chapter!10 demonstrates the improved CPU performance that can be obtained.

8-9 MULTIPLE- CYCLE HARDWIRED CONTROL

To demonstrate multiple- cycle control, we use the architecture of the simple com-
puter, but modify its datapath, memory, and control. The goal of the modi"cations is
to demonstrate the use of a single memory for both data and instructions and to
demonstrate how more complex instructions can be implemented by using multiple
clock cycles per instruction. The block diagram in Figure!8-18 shows the modi"ca-
tions to the datapath, memory, and control.

The changes to the single- cycle computer can be observed by comparing Figures
8-15 and 8-18. The "rst modi"cation, which is possible with, but not essential to,
 multiple- cycle operation, replaces the separate instruction memory and data memory
in Figure!8-15 with the single Memory M in Figure!8-18. To fetch instructions, the PC is
the address source for the memory, and to fetch data, Bus A is the address source. At
the address input to memory, multiplexer MUX M selects between these two address
sources. MUX M requires an additional control signal, MM, which is added to the
 control- word format. Since instructions from Memory M are needed in the control
unit, a path is added from its output to the instruction register IR in the control unit.

PC

Instruction
memory

Register file
(Read)

MUX B

Function
unit or

Data memory

MUX D

Register file 0.6 ns
(Write)

0.2 ns

4 ns

0.6 ns

0.2 ns

4 ns

0.2 ns

 FIGURE!8-17
 Worst- Case Delay Path in Single- Cycle Computer

M08_MANO0637_05_SE_C08.indd 467 21/01/15 10:02 AM

P1
Single-Cycle

Exercise 1: Worst Case Delay

• 1 Register: 0.2ns; Memory Read: 3ns; Memory Write: 4ns; ALU (Overall) 2ns; 1 MUX 0.2ns;
Instruction Decoder 0.2ns

• With the above diagram and component-level WCD, provide a rough estimation of overall WCD

Exe
rci

se

P0
XXXXXXX

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

P1
Single-Cycle

How can we improve?

• Better Ingredients? 
Better(smaller) components will improve this

• Less? 
Less number of components will also improve this

• Is that all? 
Well, pipelining is the real solution. But we’ll discuss that a small bit later.

Futu
re

P0
XXXXXXX

1. Figure 8.17

P1
Single-Cycle

P0
XXXXXXX

P2
Multiple-Cycle

Multiple-Cycle
Computers

Modern Computers are often
Multiple-Cycle

• It means: it could take longer than 1 CLK cycle to execute one instruction 
Intel x86, AMD x86_64, PowerPC, ARM32, ARM64, the list goes on and on and on

• Why?

• Memory is slower than Registers, SSDs and other devices are slower than memory

• Some arithmetic function could be very complicated 
e.g. float multiplication and division

• Also, we usually only get 1 main memory, not separate Instruction Memory and Data
Memory

• Why is this a big deal separating Single-Cycle CPUs from Multiple-Cycle CPUs?

Rev
iew

P0
XXXXXXX

P2
Multiple-Cycle

Multiple-Cycle Computer
• Occasions under which an instruction might take longer than 1 CLK to

execute

1. ALU requires more time to execute some instructions

• E.g. Float arithmetics, multipliers and dividers, usually take more than 1
cycle

• Employ a counter to count the number of cycles needed for certain
operations. When the counter reaches a certain value, we can move on

• What else should the CPU do here?

Conc
ep

tCPU halts all Write operations of registers (including PC and IR) until the
ALU gives an OK

P2
Multiple-Cycle

Multiple-Cycle Computer
• Occasions under which an instruction might take longer than 1 CLK to

execute

2. Main data bus requires more time to transfer data

• Devices on the main data bus could vary. E.g. Main memory, GPU,
Hard drive, etc.

• Each devices can have their own mechanisms for informing the CPU

• What else should the CPU do here?

Conc
ep

tCPU halts all Write operations of registers (including PC and IR) until the
ALU gives an OK

P2
Multiple-Cycle

The Control Unit

• Previously, we’ve discussed the Instruction Interpretation module. In
modern CPUs, this is usually also referred to as an Instruction Decoder

Rev
iew

P0
XXXXXXX

P2
Multiple-Cycle

ALU

Instruction
Interpretation

Instruc.
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

Data bus

Mem Add

Mem R/W

The Control Unit

• In Single-Cycle CPUs, the Instruction Decoder is the Control Unit. It is Combinational.

• In Multiple-Cycle CPUs, the Control Unit is Sequential, and must also include:

• a temporary place to hold the current Instruction 
e.g. the Instruction Register1, or the Instruction Queue2, etc.

• a Control Logic Unit, which contains

• A bunch of counters and status ports that connects to the ALU and Main data bus controller

• A counter for certain operations whose required CLK cycles are known

• Others, depending on the instruction set

Conc
ep

t
1. Used commonly in MIPS. Modern CPUs with Pipelines often has more complex structures than just an IR.
2. Used in for example the 8086 CPU.
3. The CLU is something more unique to the LCD textbook, it is not discussed in CO

P2
Multiple-Cycle

Instruction
Interpretation Control unit≠

The Control Unit
Instruction Register

• IR is a register that holds the current instruction, as it is executed

• Why isn’t it required in Single-Cycle CPUs?

• It has a IL signal for enabling "Instruction Load", this signal comes from
the Control Logic Unit, and is part of the Control Word

Te
ch

nic
al

1. Control Word is something that’s used in Single-Cycle CPUs, Multiple-Cycle CPUs, as well as Pipelined CPUs.

P2
Multiple-Cycle

The Control Unit
Programme Counter

• During the execution of an instruction in a Multiple-Cycle Computer

• The Programme Counter’s value must NOT change with CLK when we don’t
want it to

• When should it change?

• When the control unit has determined that the current instruction has been
completed, the control unit will enable the PC to have its value changed,
either by performing increment or by going to another address using Jump/
Branching

• Solution: having special control signals PS from the Control Logic Unit

Te
ch

nic
al

P2
Multiple-Cycle

An Example Control Logic Unit
16

• The combined output of this Control Logic Unit is called the Control Word, it control the sequence of microoperations

• Datapath Control signals are combinational interpretation of the Instruction, similar to the Instruction Decoder in
Single-Cycle CPUs

• Rt, Rs, Rd: connects to the register array; Ref. LS9

• FS: function selection, connects to the ALU for function selection

• ME: Memory Chip Enable; WE: Memory Write Enable; Ref. LS5

Exa
mple

P0
XXXXXXX

1. Datapath Control here NOT identical with the one in LCD textbook, so it’s more in line with LogicWorks memory and ARM instructions

P2
Multiple-Cycle

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Datapath Control

An Example Control Logic Unit
16

• Sequence Control: control the execution of multi-cycle instructions

• NS: a 4bit counter’s internal state; This is often implemented using flip-flops

• PS: Programme Counter Control

• IL: Instruction Load 
Controls whether to move on to the next instruction and reset the counter

Exa
mple

P0
XXXXXXX

1. Seq. Ctrl. here mostly consistent with LCD textbook

P2
Multiple-Cycle

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Seq. Ctrl. Datapath Control

An Example Control Logic Unit
16

Te
ch

nic
al

P0
XXXXXXX

1. Seq. Ctrl. here mostly consistent with LCD textbook

P2
Multiple-Cycle

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Seq. Ctrl. Datapath Control

Seq. Ctrl. Meaning

PS = 00 Hold PC

PS = 01 Increment PC, meaning PC += 1

PS = 10 Conditional Branch; PC receives new value from ALU when condition is met

PS = 11 Jump; PC receives new value from ALU

IL = 0 Hold IR

IL = 1 Load new instruction as specified by PC

An Example Control Logic Unit
16

Te
ch

nic
al

P0
XXXXXXX

1. Seq. Ctrl. here mostly consistent with LCD textbook

P2
Multiple-Cycle

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Seq. Ctrl. Datapath Control

• NS: next state

• Every CLK cycle, NS increases by 1

• Different NS values for different instructions corresponds to different PS/IL values

• After the execution of an instruction: NS is reset to 0; PS to 00 (Hold); IL to 1 (Load) 
This allows a new instruction to be loaded from the Main Memory to Instruction Register

An Example Control Logic Unit
16

Te
ch

nic
al

P0
XXXXXXX

1. Seq. Ctrl. here mostly consistent with LCD textbook

P2
Multiple-Cycle

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Seq. Ctrl. Datapath Control
• NS = 4

• Let’s say Instruction Load takes 4 cycles, PS/IL’s values are Held from NS=0 to NS=3

• After NS reaches 4, the new instruction is Fetched

• IL returns to 0 so IR holds the new instruction, until the execution of such is completed

• PS can go to 01, so PC = PC + 1 as per ARM specification. This lasts 1 cycle.

• We now perform interpretation/decoding for the newly acquired instruction. This can take 1 cycle

An Example Control Logic Unit
16

Te
ch

nic
al

P0
XXXXXXX

1. Seq. Ctrl. here mostly consistent with LCD textbook

P2
Multiple-Cycle

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Seq. Ctrl. Datapath Control
• NS = 5

• NS reaches 4, the new instruction is Fetched

• NS reaches 5, PC has increased by 1, the new instruction is decoded, ready for execution

• IL remains at 0

• PS can go to 00

• Say we have a register arithmetic operation, this takes 1 cycle

An Example Control Logic Unit
16

Te
ch

nic
al

P0
XXXXXXX

1. Seq. Ctrl. here mostly consistent with LCD textbook

P2
Multiple-Cycle

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Seq. Ctrl. Datapath Control

• NS = 0

• NS reaches 4, the new instruction is Fetched

• NS reaches 5, PC has increased by 1, the new instruction is Decoded, ready for execution

• NS reaches 6, the instruction is Executed, NS resets to 0, IL set to 1, PS set to 00, start
loading the next instruction

3 Primary Stages of CPU
Execution1

• Fetch

• The fetching of information from either the Main Memory or Register

• Decode

• The interpretation of the instruction, generating the appropriate Datapath Control

• Execute

• Actual execution of the instruction 
After which the NS counter in the previous example should reset, so do the other
Sequence Control signals

Conc
ep

t

P0
XXXXXXX

1. IBM Stretch Project, 1956-1961

P2
Multiple-Cycle

Exercise 2: Control Word

Exe
rci

se

P0
XXXXXXX

P2
Multiple-Cycle

16

Instruction Decoder + Control Logic
(Control Logic Unit)

N
S

4

PS IL

2

R
t

R
n

R
m FS M
E

W
E

73 3 3

IR

Seq. Ctrl. Datapath Control

• Are these datapath control signals really enough?

• At which stage will the datapath control signals be available? What values
should they be?

• Assume a Multiple-Cycle CPU, with other I/O devices. Should the Control Unit
require other input ports?

Stages of ARM CPUs
• ARM largely follows the Fetch/Decode/Execution idea, with

• ARMv7: exactly these 3 stages

• ARMv9: 5 stages, but each stage is much more efficient than ARMv7, so the overall
efficiency is actually higher

• ARMv10: 6 stage, but each stage is much more efficient than ARMv7/v9, so the
overall efficiency is almost double that of ARMv7

• ARMv11: 8 stages, fetch for example is divided into two; even faster than v10

• Why does having more stages give faster execution? 
Because of Pipelining.

Conc
ep

t

P0
XXXXXXX

1. https://developer.arm.com/documentation/ddi0333/h/introduction/pipeline-stages

P2
Multiple-Cycle

https://developer.arm.com/documentation/ddi0333/h/introduction/pipeline-stages

