
25.10.24 17:51

CSCI 250 
Introduction to Computer Organisation 

Lecture 3: CPU Architecture V

Jetic Gū

2024 Fall Semester (S3)



Overview

• Architecture: von Neumann


• Textbook: -


• Core Ideas:


1. Case Study: a CPU without Pipeline, MIPS



A Case Study: MIPS

P1 
MIPS



Why MIPS?

• A common MIPS CPU example is one with a separate instruction memory and 
main data memory


• This makes it easier to implement the CPU without involving pipeline


• It still works as a fully functional CPU, just not as sophisticated as our 
modern CPUs


• After we learned how this CPU works, we can then understand better how 
a pipelined modern CPU like ARM works

Conc
ep

t

P0 
XXXXXXX

P1 
MIPS



Components

• A Programme Counter that is separate from the register array 
This is a bit weird for ARM, but for MIPS this is OK


• Instruction Memory can use normal SRAM module, but read only. Address 
goes in, instruction comes out


• ALU and adder, as well as other necessary components 

Te
ch

nic
al

P1 
MIPS



Datapath from CSCI150

• There’s no memory, we didn’t discuss the control unit. Well, now we will

Rev
iew

P0 
XXXXXXX

P1 
MIPS

Register Array (Reg)

REG AX
Q

D
REG BX

Q
D

REG CX
Q

D
REG DX

Q
D

……

Control Unit 
(CU)

Dec

Functional 
Block 1

0. Assign.

…

1. Transfer2. Shift L/R3. NOT4. Vector5. Rotate L/RFunctional 
Block N



Step 1: Adding Memory 
(Main Data Bus)

• ALU should be able to output to the main data bus: Address, Data

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Control Unit 
(CU)

Dec

ALU

Mem Add

Data bus

Mem R/W



Step 1: Adding Memory 
(Main Data Bus)

• Register Array should be able to accept data from the main data bus

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Control Unit 
(CU)

Dec

ALU

Data bus

How should we 
connect this?

Mem Add

Mem R/W



Step 1: Adding Memory 
(Main Data Bus)

• Bidirectional Data Bus


• You can activate data going from CPU to memory


• You can activate data going from memory to CPU


• What if you want it just OFF? (Open circuit?)

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

Data bus



Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

• Register Array should be able to accept data from the main data bus 
need to ensure your data is going in the right direction

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

Control Unit 
(CU)

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec

ALU

Data bus

Mem Add

Mem R/W



Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

1. ALU -> RegArray

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

Control Unit 
(CU)

ALU

Data bus

Mem Add

Mem R/W
Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

2. Reg2 -> Data Bus

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

Control Unit 
(CU)

ALU

Data bus

Mem Add

Mem R/W
Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

3. Data Bus -> RegArray

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

Control Unit 
(CU)

ALU

Data bus

Mem Add

Mem R/W
Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



Step 2: Adding Instruction 
Memory

• Your control unit here is broken into several pieces

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

ALU

Data bus

Mem Add

Mem R/W

Instruction 
Interpretation

Instruc. 
Memory

Instruction

Add

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



Step 2: Adding Instruction 
Memory

• Programme Counter provides the address of the instruction to retrieve 

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

ALU

Data bus

Mem Add

Mem R/W

Instruction 
Interpretation

Instruc. 
Memory

Instruction

Add

PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



Step 2: Adding Instruction 
Memory

• Programme Counter increases its value for every CLK, moving to the next 
instruction to execute 

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

ALU

Data bus

Mem Add

Mem R/W

Instruction 
Interpretation

Instruc. 
Memory

Instruction

Add

PC

Adder

1

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



Branching 
MIPS: J type instructions

• As we discussed before, you should be able to change the address of the next 
instruction


• This can happen when you perform a function call, or when you use a for loop, or 
even an if condition


• Branching  
Changes PC value to an immediate, or from a register, or original PC with Offset 

• Conditional Branching is triggered when certain conditions are met


• For MIPS, an example is beq: 
compares two registers value, if they are the same, PC <= some other value

Conc
ep

t

P1 
MIPS



Step 3: Adding Branching

• Programme Counter increases its value for every CLK, moving to the next 
instruction to execute 

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

ALU

Data bus

Mem Add

Mem R/W

Instruction 
Interpretation

Instruc. 
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



MIPS Example CPU

• Programme Counter increases its value for every CLK, moving to the next 
instruction to execute 

Te
ch

nic
al

P0 
XXXXXXX

P1 
MIPS

ALU

Data bus

Mem Add

Mem R/W

Instruction 
Interpretation

Instruc. 
Memory

Instruction

Add

PC

Adder

1
new PC

Register Array (Reg)

REG 0
Q

D
REG 1

Q
D

REG 2
Q

D
REG 3

Q
D

……

Dec



What is still missing?
• MIPS retrieval of instructions is instantaneous, and is executed within the same CLK cycle


• This is not realistic in x64 nor ARM, where a single instruction coming from memory/cache will always 
suffer from delay


• All MIPS instructions finish within one CLK cycle


• This is also not realistic in x64 nor ARM


• This MIPS CPU has separate instruction memory and main memory


• In reality, ARM/x64 maintains a small list of instructions to execute, but make no mistake, there’s only 
ONE memory


• This MIPS doesn’t have Interrupt


• This is unlikely in most modern CPUs, not just ARM and x64. There should always be interrupt

Conc
ep

t

P0 
XXXXXXX

P1 
MIPS



What is still missing?

• How easy is it to merge the instruction memory and main memory into a 
single one? Is it possible within the limits of what we’ve discussed? What 
would be needed?

Futu
re

P0 
XXXXXXX

P1 
MIPS


