CSCI 250
Introduction to Computer Organisation

Lecture 3: CPU Architecture V

Jetic Gu
2024 Fall Semester (S3)

Overview

o Architecture: von Neumann
o Jextbook: -
e Core ldeas:

1. Case Study: a CPU without Pipeline, MIPS

A Case Study: MIPS

Why MIPS?

e A common MIPS CPU example is one with a separate instruction memory and
main data memory

e This makes it easier to implement the CPU without involving pipeline

e |t still works as a fully functional CPU, just not as sophisticated as our
modern CPUs

e After we learned how this CPU works, we can then understand better how
a pipelined modern CPU like ARM works

Components

e A Programme Counter that is separate from the register array
This is a bit weird for ARM, but for MIPS this is OK

e |nstruction Memory can use normal SRAM module, but read only. Address
goes In, instruction comes out

e ALU and adder, as well as other necessary components

Datapath from CSCI150

Q-

Register Array (Reg) FUB r;ctiic()r;al
oC

pREGAX | ||
[reGBx_

!- Functional
Block N

e There’s no memory, we didn’t discuss the control unit. Well, now we will

. Step 1: Adding Memory
(Main Data Bus)

Control Unit
(CU)

Mem R/W

Register Array (Reg) Mem A:dd
: -,FEE-
[ReG2
[REG3

-I- Data bus

e ALU should be able to output to the main data bus: Address, Data

. Step 1: Adding Memory
(Main Data Bus)

Control Unit
(CU)

Mem R/W

Register Array (Reg)

REGY
T

Mem Add
]

i How should we
.I connect this?
- Data bus

e Register Array should be able to accept data from the main data bus

. Step 1: Adding Memory
(Main Data Bus)

Data bus
—

e Bidirectional Data Bus
e You can activate data going from CPU to memory
e You can activate data going from memory to CPU

e What if you want it just OFF? (Open circuit?)

. Step 1: Adding Memory
(Main Data Bus)

Control Unit
(CU)

Mem R/W

Register Array (Reg) Mem Add

Data bus

* Register Array should be able to accept data from the main data bus
need to ensure your data is going in the right direction

. Step 1: Adding Memory
(Main Data Bus)

Control Unit

(CU)
Mem R/W
Register Array (Reg) Mem Add
!FEE-
! ~
|-

1. ALU -> RegArray

. Step 1: Adding Memory
(Main Data Bus)

Control Unit

(CU)
Mem R/W
Register Array (Reg) Mem Add
!FEE-
! ~
|-

2. Reg2 -> Data Bus

. Step 1: Adding Memory
(Main Data Bus)

Control Unit
(CU)

Mem R/W

Register Array (Reg)

e

3. Data Bus -> RegArray

Mem Add

Data bus

w otep 2: Adding Instruction
Memory

Mem R/W
— Register Array (Reg) Mem Add
(0))
=l _
Add % ;3*;
Instruc. ER 5 =
Memory D =
O S
S Data bus

e Your control unit here is broken into several pieces

w otep 2: Adding Instruction
Memory

Mem R/W
— Register Array (Reg) Mem Add
n
c IS
= EE
Instruc. ER 5 =
Memory D =
O S
S Data bus

e Programme Counter provides the address of the instruction to retrieve

Step 2: Adding Instruction
Memory

Mem R/W
— Register Array (Reg) Mem Add
(0))
=l _
s 2]
Instruc. ER 5 =
Memory D =
O S
5 Data bus

e Programme Counter increases its value for every CLK, moving to the next
iInstruction to execute

Branching
MIPS: J type instructions

 As we discussed before, you should be able to change the address of the next
Instruction

P1
MIPS

 This can happen when you perform a function call, or when you use a for loop, or
even an if condition

e Branching
Changes PC value to an immediate, or from a register, or original PC with Offset

e Conditional Branching is triggered when certain conditions are met

e For MIPS, an example is beq:
compares two registers value, if they are the same, PC <= some other value

Step 3: Adding Branching

new P
t Mem R/W
— Register Array (Reg) Mem Add
(0))
=l _
Ade % ?3*;
Instruc. ER 5 =
Memory D =
O S
5 Data bus

e Programme Counter increases its value for every CLK, moving to the next
iInstruction to execute

P1
MIPS

MIPS Example CPU

new P
t Mem R/W
— Register Array (Reg) Mem Add
(0))
=l _
Ade % ?3*;
Instruc. ER 5 =
Memory D =
O S
5 Data bus

e Programme Counter increases its value for every CLK, moving to the next
iInstruction to execute

What is still missing?

e MIPS retrieval of instructions is instantaneous, and is executed within the same CLK cycle

* This is not realistic in x64 nor ARM, where a single instruction coming from memory/cache will always
suffer from delay

e All MIPS instructions finish within one CLK cycle
 This is also not realistic in x64 nor ARM
 This MIPS CPU has separate instruction memory and main memory

e In reality, ARM/x64 maintains a small list of instructions to execute, but make no mistake, there’s only
ONE memory

e This MIPS doesn’t have Interrupt

* This is unlikely in most modern CPUs, not just ARM and x64. There should always be interrupt

What is still missing?

e How easy Is it to merge the instruction memory and main memory into a
single one? Is it possible within the limits of what we’ve discussed? What
would be needed?

