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Overview

• Architecture: von Neumann


• Textbook: -


• Core Ideas:


1. Case Study: a CPU without Pipeline, MIPS



A Case Study: MIPS

P1 
MIPS



Why MIPS?

• A common MIPS CPU example is one with a separate instruction memory and 
main data memory


• This makes it easier to implement the CPU without involving pipeline


• It still works as a fully functional CPU, just not as sophisticated as our 
modern CPUs


• After we learned how this CPU works, we can then understand better how 
a pipelined modern CPU like ARM works
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Components

• A Programme Counter that is separate from the register array 
This is a bit weird for ARM, but for MIPS this is OK


• Instruction Memory can use normal SRAM module, but read only. Address 
goes in, instruction comes out


• ALU and adder, as well as other necessary components 
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Datapath from CSCI150

• There’s no memory, we didn’t discuss the control unit. Well, now we will
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Step 1: Adding Memory 
(Main Data Bus)

• ALU should be able to output to the main data bus: Address, Data
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Step 1: Adding Memory 
(Main Data Bus)

• Register Array should be able to accept data from the main data bus
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Step 1: Adding Memory 
(Main Data Bus)

• Bidirectional Data Bus


• You can activate data going from CPU to memory


• You can activate data going from memory to CPU


• What if you want it just OFF? (Open circuit?)
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Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

• Register Array should be able to accept data from the main data bus 
need to ensure your data is going in the right direction
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Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

1. ALU -> RegArray
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Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

2. Reg2 -> Data Bus
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Instruction 
Interpretation

Step 1: Adding Memory 
(Main Data Bus)

3. Data Bus -> RegArray
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Step 2: Adding Instruction 
Memory

• Your control unit here is broken into several pieces
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Step 2: Adding Instruction 
Memory

• Programme Counter provides the address of the instruction to retrieve 
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Step 2: Adding Instruction 
Memory

• Programme Counter increases its value for every CLK, moving to the next 
instruction to execute 
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Branching 
MIPS: J type instructions

• As we discussed before, you should be able to change the address of the next 
instruction


• This can happen when you perform a function call, or when you use a for loop, or 
even an if condition


• Branching  
Changes PC value to an immediate, or from a register, or original PC with Offset 

• Conditional Branching is triggered when certain conditions are met


• For MIPS, an example is beq: 
compares two registers value, if they are the same, PC <= some other value
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Step 3: Adding Branching

• Programme Counter increases its value for every CLK, moving to the next 
instruction to execute 
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MIPS Example CPU

• Programme Counter increases its value for every CLK, moving to the next 
instruction to execute 
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What is still missing?
• MIPS retrieval of instructions is instantaneous, and is executed within the same CLK cycle


• This is not realistic in x64 nor ARM, where a single instruction coming from memory/cache will always 
suffer from delay


• All MIPS instructions finish within one CLK cycle


• This is also not realistic in x64 nor ARM


• This MIPS CPU has separate instruction memory and main memory


• In reality, ARM/x64 maintains a small list of instructions to execute, but make no mistake, there’s only 
ONE memory


• This MIPS doesn’t have Interrupt


• This is unlikely in most modern CPUs, not just ARM and x64. There should always be interrupt

Conc
ep

t

P0 
XXXXXXX

P1 
MIPS



What is still missing?

• How easy is it to merge the instruction memory and main memory into a 
single one? Is it possible within the limits of what we’ve discussed? What 
would be needed?
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