
24.10.24 20:51

CSCI 250 
Introduction to Computer Organisation 

Lecture 3: CPU Architecture IV

Jetic Gū

2024 Fall Semester (S3)



Overview

• Architecture: von Neumann


• Textbook: -


• Core Ideas:


1. IO Devices


2. File Systems



Computer IO Devices

P1 
IO Devices



von Neumann Architecture

• CPU: Central Processing Unit (Very fast) 
Control Unit, ALU, Instruction Register/Queue/Stack, etc.


• Main Memory (Relatively fast)


• IO Devices (Slow)


• Storage


• Display, Keyboard, etc.

Rev
iew

P1 
IO Devices



IO Devices
• Controlled by controllers on your motherboard


• North bridge


• High Speed Communications


• Memory, GPU, etc.


• South bridge


• Slower I/O Operations


• HD, SSD, Serial Buses, etc.


• Information traverses between the CPU and these various controllers through bidirectional buses

Conc
ep

t

P1 
IO Devices



IO Devices

Conc
ep

t

P1 
IO Devices

CPU

Main Memory

IO Controller IO Controller IO Controller

Storage Graphics Others

Main Data Bus

Interrupt



Example: 68k CPU
• 68000 CPU Pins

Te
ch

nic
al

P0 
XXXXXXX

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

P1 
IO Devices

https://wiki.console5.com/tw/images/5/5f/M68000.pdf


Example: 68k CPU

• 68000 CPU


• 64 total pins


• 16pins for data bus, bidirectional


• 24pins for memory address


• Various status and control input, like interrupt

Te
ch

nic
al

P0 
XXXXXXX

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

P1 
IO Devices

https://wiki.console5.com/tw/images/5/5f/M68000.pdf


Example: 68k CPU
• 68000, Interrupts, Input to the CPU


• Generated by various controllers 
Floppy Controller + SCSI Controller + Mouse Controller + Keyboard 
Controller


• Interrupt: devices want to tell the CPU something


• CPU listens, when new things happen, interrupts are generated to 
inform the CPU


• e.g. new disk inserted, mouse movement, keyboard press, etc.


• CPU will drop whatever its doing to handle interrupts. Once handled, 
CPU will enter into Interrupt Acknowledgment Cycle, confirm that an 
intercept has been handled. (using address pins)

Te
ch

nic
al

P0 
XXXXXXX

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

P1 
IO Devices

https://wiki.console5.com/tw/images/5/5f/M68000.pdf


Example: 68k CPU

• 68000, the CPU wants to talk to other controllers


• CPU requests for data bus write permission


• CPU transmits data to be processed (16bits)


• When controllers received and processed the data, it will 
generate a response to the CPU for confirmation


• CPU moves on to transmit other part of the data, or just go 
do something else

Te
ch

nic
al

P0 
XXXXXXX

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

P1 
IO Devices

https://wiki.console5.com/tw/images/5/5f/M68000.pdf


Example: 68k CPU

• 68000, the CPU wants other controllers to provide it with data


• CPU transmits request, then awaits for data bus to provide 
data


• Data comes in, CPU gets signal confirming the wait is over, 
then gets busy processing the data

Te
ch

nic
al

P0 
XXXXXXX

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

P1 
IO Devices

https://wiki.console5.com/tw/images/5/5f/M68000.pdf


Example: 68k CPU
• Data bus usage


• R/W (O): Read/Write 
CPU controls whether it reads from or writes to the data bus


• DTACK (I): Data Acknowledgment  
indicates the completion of data transfer


• Arbitration Control


• BUS Request (I); BUS Grant (O); BUS Grant Acknowledge (I)


• Other devices negotiate with the CPU when they want to 
transfer data

Te
ch

nic
al

P0 
XXXXXXX

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

P1 
IO Devices

https://wiki.console5.com/tw/images/5/5f/M68000.pdf


Example: 68k CPU 
(in MacIntosh Plus)

• The computer has 1MB main memory, shared by the 
CPU and video controller


• What you see on the 512 x 342 pixel display, each pixel 
can be Black or White, 1bit of storage required


• This is a total of 22KB, from memory address #0FA700

Te
ch

nic
al

P0 
XXXXXXX

1. https://www.osdata.com/system/physical/memmap.htm#MacPlus 
2. Modern computers don’t work like this

P1 
IO Devices

https://www.osdata.com/system/physical/memmap.htm#MacPlus


Example: 68k CPU 
(in MacIntosh Plus)

• Memory Address reserved for controllers


• These are NOT valid main memory addresses, but for when the 
CPU wants direct access to other controllers/peripherals


• #400000 - #41FFFF: ROM, proprietary subroutines


• #580000 - #5FFFFF: SCSI controller


• #900000 - #9FFFFF: SCSI Read


• #B00000 - #BFFFFF: SCSI Read


• When the CPU requests access to these addresses, it is in fact 
interacting directly with controllers. Modern computers don’t do this 
normally.

Te
ch

nic
al

P0 
XXXXXXX

1. https://www.osdata.com/system/physical/memmap.htm#MacPlus 
2. Modern computers don’t work like this

P1 
IO Devices

https://www.osdata.com/system/physical/memmap.htm#MacPlus


Computer File 
Systems

P2 
File Systems



Storage Device History

• Before the invention of PC, computers commonly use 
paper tapes like punch cards


• Remember some of our instructions? They are done on 
punch cards/tapes and fed to the machine directly, as 
computer processes each instruction, the feed machine 
feeds in the next bit


• Later on, PCs used stuff like cassette tapes to store 
binary signals 
Yes, the same cassette tapes as your mum’s walkman

Conc
ep

t

P2 
File Systems



Storage Device History
• Entire cassette’s content needed to be loaded into memory 

before anything can be used


• Apple I, Commodore, etc.


• Put the cassette in, type a load command, play the tape to 
the computer, then entire programmes are loaded into the 
main memory


• A hardware controller is used to transfer information directly 
to memory, this is called: Direct Memory Access


• CPU has limited capability to control these devices, it requires 
special instruction designed specifically for the task

Conc
ep

t

P2 
File Systems



Common CPU Capabilities
• Entire cassette’s content needed to be loaded into memory before anything can 

be used


• Apple I, Commodore, etc.


• Put the cassette in, type a load command, play the tape to the computer, then 
entire programmes are loaded into the main memory


• A hardware controller is used to transfer information directly to memory, this is 
called: Direct Memory Access


• CPU has limited capability to control these devices, it requires special 
instruction designed specifically for the task

Conc
ep

t

P2 
File Systems



Storage Device History
• Floppy Disk


• A major breakthrough


• 5.25 Floppy


• Initially, 80KB per disk


• The use of file systems: multiple files (including programmes) are stored 
within a single disk 

Te
ch

nic
al

P2 
File Systems



Major File Systems

• 1977 FAT (File Allocation Table)


• Modern version of which: exFAT, still used today


• Modern File Systems


• M$: NTFS; Linux: ext4; apple: APFS

Conc
ep

t

P2 
File Systems



Major File Systems

• Features


• Multiple Files


• Folders


• Journaling*


• Encryption*

Conc
ep

t

P2 
File Systems



Physical Hard Drive/SSD/SD 
Cards

• Partition Maps


• GUID Partition Map (Current)


• Used by Windows/Linux/OSX


• Master Boot Record (Old)


• Partition Maps store how physical storage devices are divided into software 
drives


• Windows: C drive, D drive, etc.

Te
ch

nic
al

P0 
XXXXXXX

P2 
File Systems



Physical Hard Drive/SSD/SD 
Cards

• Master Boot Record


• 4 Logical Partitions per device


• First 512 bytes (sector 0) of a device is used for the 
MBR partition table

Te
ch

nic
al

P0 
XXXXXXX

1. https://www.pjrc.com/tech/8051/ide/fat32.html

P2 
File Systems

https://www.pjrc.com/tech/8051/ide/fat32.html


FAT32
• An FAT32 partition (also called volumes) is divided into equally sized clusters (small blocks of 

contiguous spaces)


• Each file may occupy 1 or more clusters depending on its size. These clusters are not necessarily 
adjacent to one another, which may lead to fragmentation


• This is implemented using a Linked List data structure.


• Bytes per sector: 512 Bytes 
this is more a reference to hard drives, but still exist when discussing SSDs etc.


• Sectors per cluster: 1-128 
depends on device’s actual size, partition’s size, etc.


• Every partition volume has 2 File Allocation Tables, storing the general folder/file structure of the 
entire partition, as well as where each file is located.

Te
ch

nic
al

P0 
XXXXXXX

P2 
File Systems



FAT32

Te
ch

nic
al

P0 
XXXXXXX

1. https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

P2 
File Systems

• Directories are represented as a special type of files


• The FAT area in the beginning part of a partition:


• Two File Allocation Tables, for redundancy. This provides the maps of data region, indicating which clusters 
are used by files and directories


• Boot Sector: used for starting an Operating System, stores the instructions for OS startup

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32


FAT32
• File/Directory Entry in the FAT table


• 0x00-0x07: Short file name (8bytes) 
Long filenames require extensions, boring subject we won’t cover it in class


• 0x08-0x0A: Short file extension (3bytes)


• 0x0B: File Attribute (1byte) 
Read-Only, Hidden, System Flag, etc.


• 0x0C-0x15: Misc


• 0x16-0x19: Last modified time and date (4bytes)


• 0x1A-0x1B: First file cluster location (2bytes)


• 0x1C-0x1F: File size in bytes (4bytes)

Te
ch

nic
al

P0 
XXXXXXX

1. https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

P2 
File Systems

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32


Example: a hard drive with a 
single file

• File name: boo.txt 

• File content: Hello World! 

• HEX: 48 65 6c 6c 6f 0a 

• 0a is ASCII for End-of-File

Te
ch

nic
al

P0 
XXXXXXX

1. https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

P2 
File Systems

• Your hard drive


• MBR sector; followed by


• Boot Sector of partition 1; followed by


• FAT area with 2 FATs, inside only one 
entry, the rest empty; followed by


• Actual file: 48 65 6c 6c 6f 0a

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

