CSCI 250
Introduction to Computer Organisation

Lecture 3: CPU Architecture IV

Jetic Gu
2024 Fall Semester (S3)

Overview

e Architecture: von Neumann
e Jextbook: -
e Core ldeas:

1. 10 Devices

2. File Systems

Computer IO Devices

B von Neumann Architecture

e CPU: Central Processing Unit (Very fast)
Control Unit, ALU, Instruction Register/Queue/Stack, etc.

e Main Memory (Relatively fast)
e |O Devices (Slow)

e Storage

e Display, Keyboard, etc.

o Do |O Devices

 Controlled by controllers on your motherboard
 North bridge
e High Speed Communications
e Memory, GPU, etc.
e South bridge
e Slower I/0O Operations

e HD, SSD, Serial Buses, etc.

e Information traverses between the CPU and these various controllers through bidirectional buses

o Do |O Devices

Interrupt

Main Data Bus

|O Controller |O Controller |O Controller

Storage Graphics Others

Example: 68k CPU

e 68000 CPU Pins

Vee(2)
> ADDRESS
GND(2) US> A2
CLK
<DATA BUS> D15-D0
AS o
- RW__ 5. | ASYNCHRONOUS
<FC0 us o BUS
PROCESSOR FC1 LDS CONTROL
STATUS < FC2 DTACK >
< < -
NCGB00 | €t <H BUS
PERIPHERAL —| <—YMA BG___ 3, — ARBITRATION
CONTROL VPA BGACK CONTROL
B > <
" BERR PLO
SYSTEM _ |~ zceer 2 <o _ INTERRUPT
CONTROL < ————>>» <— CONTROL
< HALT < P2 B

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

1.

Example: 68k CPU

e 68000 CPU
e 064 total pins
e 16pins for data bus, bidirectional
e 24pins for memory address

e Various status and control input, like interrupt

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

D4 [

03 [

p2 L

o [

po [
AS [
uos [
os [
rw [
DTACK [
8G [
BGACK [
BR [
vee
ok L
GND [
HALT
RESET [
A [
E]
VPA [
BERR [
w2 L

wur
weo
Fc2 [
FCr [
Foo [
A
A2
A

ML

@ 0 N O O s W N e

-l e b e -
& W N - O

15 MC68000
MC63010
MC6SHC000

NNNB-.-.-.-.
w N - e 0 - O,

24

Juututtutbutiuuiuuutiuutiuuu

05

D7
08

D10
DN
D12
D13
D14
D15
GND

AZ23
A22

A21
veC

A9
Al8
A1l
A16
A15
Al4
A13

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

Example: 68k CPU

e 68000, Interrupts, Input to the CPU

e Generated by various controllers
Floppy Controller + SCSI Controller + Mouse Controller + Keyboard
Controller

* Interrupt: devices want to tell the CPU something

e CPU listens, when new things happen, interrupts are generated to
inform the CPU

* e.g. new disk inserted, mouse movement, keyboard press, etc.

e CPU will drop whatever its doing to handle interrupts. Once handled,
CPU will enter into Interrupt Acknowledgment Cycle, confirm that an
intercept has been handled. (using address pins)

. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

o4 [
03 [
p2 L]
D1]
po [
AS [
vos [
s [

DTACK |
86 [
BGACK [
BR [
vee]
ok
GNo [
HaLT
RESET [
vma [
E L]
VwPA [
BERR [
w2
wu [
wo
Fe2 [
o1
Fco [
A |
A2
A3 [
M

o - - - N (& on W ~N b

ah wd = - e .
O o WN e D

16

p—_—

MC63010
MCBESHCO000

—

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

1.

Example: 68k CPU

e 68000, the CPU wants to talk to other controllers
e CPU requests for data bus write permission
e CPU transmits data to be processed (16bits)

e \When controllers received and processed the data, it will
generate a response to the CPU for confirmation

e CPU moves on to transmit other part of the data, or just go
do something else

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

o4 [
03 |
p2 L]
o1 [
po [
AS [
vos [
s [
rw]

—————

DTACK [
86 [
BGACK [
BR [
vee]
ok
GNo [
HaLT
RESET [
va [
e]
WA [
BERR [
w2
wu [
wo
Fe2 [
o1
Fco [
A |
A2
A3 [

aM

L ~~ O O e W N -

B_o.o_o_o_o-o_o_a_o-ow
W O N O e WwN -, D

(

MC63010
MCBESHCO000

.........

05

D7
08

D10
DN
D12
D13
D14
D15
GND
A23
A22
A21
veC
A20
A9
A8
A1l
A16
A15
A4
A3

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

. mple: 68k CPU . +——
- 1110 64 | DS
IO Devices EXa p I e H 23]2 63 | D6
pz2 L_]3 62 | D7
or]+ 61|) D8
po |5 601 p9
AS 16 5911 D10
uos 17 s8] on
s (|8 57 | D12
rw (]9 6|1 o3
prack 1 10 5s | D14
86 L 1 54 | D15
BGACK : 12 53 :l GND
e 68000, the CPU wants other controllers to provide it with data * "]
ok] 15 MCE3000 50 | A2
GND] 16 0t o[wec
e CPU transmits request, then awaits for data bus to provide % . N
data wa 1 19 %) As
EL_]2 45 |__] A
VA [2 |1 a6
BERR [_| 22 B3] s
. | : 2] A
e Data comes in, CPU gets signal confirming the wait is over, . . a3 ma
then gets busy processing the data o2 o
T - .
Feo (] 28
a2
A2 __]30
A3]
ML 3R
64-Pin D

1. https://wiki.console5.com/tw/images/5/5f/M68000.pdf

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

1.

Example: 68k CPU

e Data bus usage

e R/W (O): Read/Write
CPU controls whether it reads from or writes to the data bus

e DTACK (I): Data Acknowledgment
indicates the completion of data transfer

e Arbitration Control

e BUS Request (I); BUS Grant (O); BUS Grant Acknowledge (l)

e QOther devices negotiate with the CPU when they want to
transfer data

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

o4 [

03 [

p2 L]
o1 [

oo]
AS [
uos [
s [
rw [
pTack [
BGACK [
BR [
vee]
ok
GNo [
HaLT
RESET [
va [
E
WA [
BERR [
w2
wo [
wo
Fe2 [
o1
Feo [
A |
A2
A3

AL

w0 0 N O O s W N e

NNB-...-.-.-.-;-.-.-&-.
L W 0 N O e WwN e,

p—_—

MC63010
MCBESHCO000

https://wiki.console5.com/tw/images/5/5f/M68000.pdf

Example: 68k CPU
(in Maclintosh Plus)

P1
|O Devices

e The computer has 1TMB main memory, shared by the
CPU and video controller

e What you see on the 512 x 342 pixel display, each pixel
can be Black or White, 1bit of storage required

e This is a total of 22KB, from memory address #0FA700

1. https://www.osdata.com/system/physical/memmap.htm#MacPlus
2. Modern computers don’t work like this

https://www.osdata.com/system/physical/memmap.htm#MacPlus

Example: 68k CPU
(in Maclintosh Plus)

* Memory Address reserved for controllers

P1

|O Devices

e These are NOT valid main memory addresses, but for when the
CPU wants direct access to other controllers/peripherals

e #400000 - #41FFFF: ROM, proprietary subroutines
e #580000 - #5FFFFF: SCSI controller

e #900000 - #9FFFFF: SCSI Read

e #B00000 - #BFFFFF: SCSI Read

e When the CPU requests access to these addresses, it is in fact

interacting directly with controllers. Modern computers don’t do this

normally.

1. https://www.osdata.com/system/physical/memmap.htm#MacPlus
2. Modern computers don’t work like this

https://www.osdata.com/system/physical/memmap.htm#MacPlus

Computer File
Systems

Storage Device History

e Before the invention of PC, computers commonly use
paper tapes like punch cards

e Remember some of our instructions? They are done on
punch cards/tapes and fed to the machine directly, as
computer processes each instruction, the feed machine

feeds In the next bit

e | ater on, PCs used stuff like cassette tapes to store
binary signals
Yes, the same cassette tapes as your mum’s walkman

e Storage Device History

e Entire cassette’s content needed to be loaded into memory
before anything can be used

e Apple |, Commodore, etc.

e Put the cassette in, type a load command, play the tape to
the computer, then entire programmes are loaded into the
main memory

A hardware controller is used to transfer information directly
to memory, this is called: Direct Memory Access

e CPU has limited capability to control these devices, it requires
special instruction designed specifically for the task

i Common CPU Capabilities

e Entire cassette’s content needed to be loaded into memory before anything can
be used

e Apple |, Commodore, etc.

e Put the cassette in, type a load command, play the tape to the computer, then
entire programmes are loaded into the main memory

A hardware controller is used to transfer information directly to memory, this is
called: Direct Memory Access

e CPU has limited capability to control these devices, it requires special
instruction designed specifically for the task

Storage Device History

e Floppy Disk
e A major breakthrough

e 5.25 Floppy

e |nitially, BOKB per disk

e The use of file systems: multiple files (including programmes) are stored
within a single disk

P2
File Systems

Major File Systems

e 1977 FAT (File Allocation Table)
e Modern version of which: exFAI, still used today

e Modern File Systems

e M$: NTFS; Linux: ext4; apple: APFS

P2
File Systems

Major File Systems

e Features
e Multiple Files
e Folders
e Journaling®

e Encryption”

» Physical Hard Drive/SSD/SD
Cards

e Partition Maps
e GUID Partition Map (Current)
e Used by Windows/Linux/OSX

e Master Boot Record (Old)

e Partition Maps store how physical storage devices are divided into software
drives

e Windows: C drive, D drive, etc.

= Physical Hard Drive/SSD/SD
d

Cards

e Master Boot Record
e 4| ogical Partitions per device

e First 512 bytes (sector 0) of a device is used for the
MBR partition table

1. https://www.pjrc.com/tech/8051/ide/fat32.html

Boot Code
446 Bytes

Partition 1 -

16 Bytes

Partition 2 -

16 Bytes

Partition 3 -

16 Bytes

Partition 4 -

16 Bytes

https://www.pjrc.com/tech/8051/ide/fat32.html

FAT32

 An FAT32 partition (also called volumes) is divided into equally sized clusters (small blocks of
contiguous spaces)

 Each file may occupy 1 or more clusters depending on its size. These clusters are not necessarily
adjacent to one another, which may lead to fragmentation

 This is implemented using a Linked List data structure.

 Bytes per sector: 512 Bytes
this is more a reference to hard drives, but still exist when discussing SSDs etc.

e Sectors per cluster: 1-128
depends on device’s actual size, partition’s size, etc.

e Every partition volume has 2 File Allocation Tables, storing the general folder/file structure of the
entire partition, as well as where each file is located.

FAT32

Sector 0 Cluster 2
1 In terms of sectors l In terms of clusters
Reserved FAT Area Data Area
Area : :
5 Root
. Directory
N N
Starting point of Starting point of Starting point of
boot sector first FAT cluster 2

e Directories are represented as a special type of files

* The FAT area in the beginning part of a partition:

* Two File Allocation Tables, for redundancy. This provides the maps of data region, indicating which clusters
are used by files and directories

e Boot Sector: used for starting an Operating System, stores the instructions for OS startup

1. https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

FAT32

e File/Directory Entry in the FAT table

e 0x00-0x07: Short file name (8bytes)
Long filenames require extensions, boring subject we won'’t cover it in class

e 0x08-0x0A: Short file extension (3bytes)

e 0xO0OB: File Attribute (1byte)
Read-Only, Hidden, System Flag, etc.

e O0x0C-0x15: Misc
e 0x16-0x19: Last modified time and date (4bytes)
e 0x1A-0x1B: First file cluster location (2bytes)

e 0x1C-0x1F: File size in bytes (4bytes)

1. https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

Example: a hard drive with a
- single file

e Your hard drive

e File name: boo.txt
e MBR sector; followed by

e File content: Hello World! "
coeo O e Boot Sector of partition 1; followed by

* HEX:48 65 6c 6c 6f Oa | car area with 2 FATs, inside only one

| | entry, the rest empty; followed by
e 0Oa is ASCII for End-of-File

e Actual file: 48 65 6¢ 6¢ 6f 0Oa

1. https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

