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Overview

• Architecture: von Neumann


• Textbook: -


• Core Ideas:


1. IO Devices


2. File Systems
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von Neumann Architecture

• CPU: Central Processing Unit (Very fast) 
Control Unit, ALU, Instruction Register/Queue/Stack, etc.


• Main Memory (Relatively fast)


• IO Devices (Slow)


• Storage


• Display, Keyboard, etc.
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IO Devices
• Controlled by controllers on your motherboard


• North bridge


• High Speed Communications


• Memory, GPU, etc.


• South bridge


• Slower I/O Operations


• HD, SSD, Serial Buses, etc.


• Information traverses between the CPU and these various controllers through bidirectional buses
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IO Devices
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Example: 68k CPU
• 68000 CPU Pins
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Example: 68k CPU

• 68000 CPU


• 64 total pins


• 16pins for data bus, bidirectional


• 24pins for memory address


• Various status and control input, like interrupt
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Example: 68k CPU
• 68000, Interrupts, Input to the CPU


• Generated by various controllers 
Floppy Controller + SCSI Controller + Mouse Controller + Keyboard 
Controller


• Interrupt: devices want to tell the CPU something


• CPU listens, when new things happen, interrupts are generated to 
inform the CPU


• e.g. new disk inserted, mouse movement, keyboard press, etc.


• CPU will drop whatever its doing to handle interrupts. Once handled, 
CPU will enter into Interrupt Acknowledgment Cycle, confirm that an 
intercept has been handled. (using address pins)
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Example: 68k CPU

• 68000, the CPU wants to talk to other controllers


• CPU requests for data bus write permission


• CPU transmits data to be processed (16bits)


• When controllers received and processed the data, it will 
generate a response to the CPU for confirmation


• CPU moves on to transmit other part of the data, or just go 
do something else
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Example: 68k CPU

• 68000, the CPU wants other controllers to provide it with data


• CPU transmits request, then awaits for data bus to provide 
data


• Data comes in, CPU gets signal confirming the wait is over, 
then gets busy processing the data
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Example: 68k CPU
• Data bus usage


• R/W (O): Read/Write 
CPU controls whether it reads from or writes to the data bus


• DTACK (I): Data Acknowledgment  
indicates the completion of data transfer


• Arbitration Control


• BUS Request (I); BUS Grant (O); BUS Grant Acknowledge (I)


• Other devices negotiate with the CPU when they want to 
transfer data
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Example: 68k CPU 
(in MacIntosh Plus)

• The computer has 1MB main memory, shared by the 
CPU and video controller


• What you see on the 512 x 342 pixel display, each pixel 
can be Black or White, 1bit of storage required


• This is a total of 22KB, from memory address #0FA700
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Example: 68k CPU 
(in MacIntosh Plus)

• Memory Address reserved for controllers


• These are NOT valid main memory addresses, but for when the 
CPU wants direct access to other controllers/peripherals


• #400000 - #41FFFF: ROM, proprietary subroutines


• #580000 - #5FFFFF: SCSI controller


• #900000 - #9FFFFF: SCSI Read


• #B00000 - #BFFFFF: SCSI Read


• When the CPU requests access to these addresses, it is in fact 
interacting directly with controllers. Modern computers don’t do this 
normally.
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Computer File 
Systems
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Storage Device History

• Before the invention of PC, computers commonly use 
paper tapes like punch cards


• Remember some of our instructions? They are done on 
punch cards/tapes and fed to the machine directly, as 
computer processes each instruction, the feed machine 
feeds in the next bit


• Later on, PCs used stuff like cassette tapes to store 
binary signals 
Yes, the same cassette tapes as your mum’s walkman
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Storage Device History
• Entire cassette’s content needed to be loaded into memory 

before anything can be used


• Apple I, Commodore, etc.


• Put the cassette in, type a load command, play the tape to 
the computer, then entire programmes are loaded into the 
main memory


• A hardware controller is used to transfer information directly 
to memory, this is called: Direct Memory Access


• CPU has limited capability to control these devices, it requires 
special instruction designed specifically for the task
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Common CPU Capabilities
• Entire cassette’s content needed to be loaded into memory before anything can 

be used


• Apple I, Commodore, etc.


• Put the cassette in, type a load command, play the tape to the computer, then 
entire programmes are loaded into the main memory


• A hardware controller is used to transfer information directly to memory, this is 
called: Direct Memory Access


• CPU has limited capability to control these devices, it requires special 
instruction designed specifically for the task
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Storage Device History
• Floppy Disk


• A major breakthrough


• 5.25 Floppy


• Initially, 80KB per disk


• The use of file systems: multiple files (including programmes) are stored 
within a single disk 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Major File Systems

• 1977 FAT (File Allocation Table)


• Modern version of which: exFAT, still used today


• Modern File Systems


• M$: NTFS; Linux: ext4; apple: APFS
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Major File Systems

• Features


• Multiple Files


• Folders


• Journaling*


• Encryption*
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Physical Hard Drive/SSD/SD 
Cards

• Partition Maps


• GUID Partition Map (Current)


• Used by Windows/Linux/OSX


• Master Boot Record (Old)


• Partition Maps store how physical storage devices are divided into software 
drives


• Windows: C drive, D drive, etc.
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Physical Hard Drive/SSD/SD 
Cards

• Master Boot Record


• 4 Logical Partitions per device


• First 512 bytes (sector 0) of a device is used for the 
MBR partition table
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FAT32
• An FAT32 partition (also called volumes) is divided into equally sized clusters (small blocks of 

contiguous spaces)


• Each file may occupy 1 or more clusters depending on its size. These clusters are not necessarily 
adjacent to one another, which may lead to fragmentation


• This is implemented using a Linked List data structure.


• Bytes per sector: 512 Bytes 
this is more a reference to hard drives, but still exist when discussing SSDs etc.


• Sectors per cluster: 1-128 
depends on device’s actual size, partition’s size, etc.


• Every partition volume has 2 File Allocation Tables, storing the general folder/file structure of the 
entire partition, as well as where each file is located.
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FAT32
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• Directories are represented as a special type of files


• The FAT area in the beginning part of a partition:


• Two File Allocation Tables, for redundancy. This provides the maps of data region, indicating which clusters 
are used by files and directories


• Boot Sector: used for starting an Operating System, stores the instructions for OS startup

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32


FAT32
• File/Directory Entry in the FAT table


• 0x00-0x07: Short file name (8bytes) 
Long filenames require extensions, boring subject we won’t cover it in class


• 0x08-0x0A: Short file extension (3bytes)


• 0x0B: File Attribute (1byte) 
Read-Only, Hidden, System Flag, etc.


• 0x0C-0x15: Misc


• 0x16-0x19: Last modified time and date (4bytes)


• 0x1A-0x1B: First file cluster location (2bytes)


• 0x1C-0x1F: File size in bytes (4bytes)
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Example: a hard drive with a 
single file

• File name: boo.txt 

• File content: Hello World! 

• HEX: 48 65 6c 6c 6f 0a 

• 0a is ASCII for End-of-File
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• Your hard drive


• MBR sector; followed by


• Boot Sector of partition 1; followed by


• FAT area with 2 FATs, inside only one 
entry, the rest empty; followed by


• Actual file: 48 65 6c 6c 6f 0a

https://eric-lo.gitbook.io/lab9-filesystem/overview-of-fat32

